Skip to main content

Abstract

In Volumes 1 and 2 of this treatise detailed accounts have been given of the various types of defects that occur in solids. We are particularly concerned in this chapter with the point defects because it is to their mobility that the phenomenon of diffusion in solids is largely due. The most important of the point defects in this connection are vacancies and interstitials and more complex types derived from these, such as divacancies, split interstitials, etc. By processes of thermal activation, vacancies can migrate by exchanging places with neighboring atoms or ions. Similarly, interstitial atoms can migrate by moving from one interstitial site to another interstitial site. Alternatively, they can migrate by the interstitialcy mechanism whereby an interstitial atom moves onto a neighboring lattice site and displaces the atom on that site into another interstitial position. The net result of defect mobility, whether of vacancies or interstitials, is that the atoms of a solid are in a state of continual migration from site to site throughout the crystal. It follows that when there are variations in composition within a solid a relative mass transport can occur of the different types of atoms present which tends to level out these variations, and it is this process that we call “diffusion.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Barrer, Diffusion in and through Solids, MacMillan (1951).

    Google Scholar 

  2. W. Seith, Diffusion in Metallen, Springer Verlag, Berlin (1955).

    Google Scholar 

  3. W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press, New York (1960).

    Google Scholar 

  4. P. G. Shewmon, Diffusion in Solids, McGraw-Hill, New York (1963).

    Google Scholar 

  5. J. Crank, Mathematics of Diffusion, Oxford Univ. Press, London (1956).

    Google Scholar 

  6. Y. Adda and J. Philibert, La Diffusion dans les Solides, Presses Universitaires de Paris (1966).

    Google Scholar 

  7. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  8. J. S. Kirkaldy, Diffusion in multicomponent metallic systems, Can. J. Phys. 35, 435 (1957).

    Article  CAS  Google Scholar 

  9. A. D. Le Claire, Diffusion in metals, in Progress in Metal Physics, Pergamon Press, London, Vol. 1 (1949), Vol. 4 (1953).

    Google Scholar 

  10. D. Lazarus, Diffusion in metals, Solid State Phys. 10, 71 (1960).

    Article  CAS  Google Scholar 

  11. D. Lazarus, Intermetallic diffusion, in Energetics in Metallurgical Phenomena, Vol. 1, Gordon and Breach (1965).

    Google Scholar 

  12. N. Peterson, Diffusion in metals, Solid State Phys. 22, 409 (1968).

    Article  CAS  Google Scholar 

  13. R. E. Howard and A. B. Lidiard, Matter transport in solids, Rep. Progr. Phys. 27, 161 (1964).

    Article  CAS  Google Scholar 

  14. P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley, New York (1972).

    Google Scholar 

  15. F. A. Kröger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1964).

    Google Scholar 

  16. Atom Movements, American Society for Metals, Cleveland, Ohio (1951).

    Google Scholar 

  17. C. T. Tomizuka, in Methods in Experimental Physics, Academic Press, New York, (1959), Vol. 5.

    Google Scholar 

  18. J. S. Kirkaldy and D. G. Fedak, Nonplanar interfaces in two phase ternary diffusion couples, Trans. Met. Soc. AIME 224, 490 (1962).

    CAS  Google Scholar 

  19. D. K. Dawson and L. W. Barr, Measurement of anionic diffusion in KBr by isotope exchange, Proc. Brit. Ceram. Soc. 9, 171 (1967).

    Google Scholar 

  20. H. S. Carslaw and J. C. Yaeger, Conduction of Heat in Solids, Oxford Univ. Press, London (1957).

    Google Scholar 

  21. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press (1972).

    Google Scholar 

  22. C. A. Wert, Damping of interstitial atoms in b.c.c. metals, J. Phys. Chem. Solids 31, 1771 (1970).

    Article  CAS  Google Scholar 

  23. G. Schumann, J. Völkl, and G. Alefeld, Relaxation process due to long range diffusion for high diffusivities in solids, Phys. Rev. Letters 21, 891 (1968).

    Article  Google Scholar 

  24. A. Seeger, D. Wolf, and H. Mehrer, Analysis of tracer and nuclear magnetic resonance measurements of self-diffusion in Al, Phys. Stat. Sol. (b) 48, 481 (1971).

    Article  CAS  Google Scholar 

  25. D. L. Johnson, New method of obtaining volume, grain boundary and surface diffusion coefficients from sintering data, J. Appl. Phys. 40, 192 (1969).

    Article  CAS  Google Scholar 

  26. J. G. Mullen, Mössbauer studies of atomic transport in solids and liquids, in Ref. 75.

    Google Scholar 

  27. T. Springer, Quasi-Elastic Neutron Scattering for the Investigation of Diffusive Motion in Solids and Liquids, Springer Tracts in Modern Physics, Vol. 64, Springer, New York (1972).

    Google Scholar 

  28. A. D. Le Claire, The analysis of grain boundary diffusion measurements, Brit. J. Appl. Phys. 14, 351 (1963).

    Article  Google Scholar 

  29. R. W. Balluffi, Dislocation self-diffusion in f.c.c. metals—A review, Phys. Stat. Sol. 42, 11(1970).

    Google Scholar 

  30. H. Gleiter and B. Chalmers, High angle grain boundaries, in Progress in Materials Science, Vol. 16, Pergamon Press (1972), Chapter 4.

    Google Scholar 

  31. E. W. Hart, On the role of dislocations in bulk diffusion, Acta Met. 5, 597 (1957).

    Article  CAS  Google Scholar 

  32. A. J. Mortlock, The effect of segregation on the solute diffusion enhancement due to the presence of dislocations, Acta Met. 8, 132 (1960).

    Article  Google Scholar 

  33. G. Neumann and G. M. Neumann, Surface Self-Diffusion of Metals, Trans. Tech. Publ., Ohio (1972).

    Google Scholar 

  34. J. M. Blakeley, Surface Diffusion, Progr. in Materials Science, Vol. 10, Pergamon Press (1963).

    Google Scholar 

  35. L. S. Darken, Diffusion of carbon in austenite with a discontinuity in composition, Trans. AIME 180, 430 (1949).

    Google Scholar 

  36. J. E. Reynolds, B. L. Averbach, and M. Cohen, Self-diffusion and interdiffusion in AuNi Alloys, Acta Met. 5, 29 (1957);

    Article  CAS  Google Scholar 

  37. J. R. Manning, Tracer diffusion in a chemical concentration gradient in AgCd, Phys. Rev. 116, 69 (1959).

    Article  CAS  Google Scholar 

  38. J. R. Manning, Diffusion Kinetics in Crystals, Van Nostrand (1968).

    Google Scholar 

  39. J. R. Manning, Vacancy wind effect in diffusion and deviation from thermodynamic equilibrium conditions, Can. J. Phys. 46, 2633 (1968).

    Article  CAS  Google Scholar 

  40. R. O. Meyer, Phys. Rev. 181, 1086 (1969);

    Article  CAS  Google Scholar 

  41. M. H. Greene et al., Phys. Stat. Sol 5(a), 365 (1971);

    Article  CAS  Google Scholar 

  42. M. J. Dallwitz, Acta Met. 20, 1229 (1972).

    Article  CAS  Google Scholar 

  43. D. J. Schmatz, H. A. Damian, and H. I. Aaronson, J. Appl. Phys. 37, 1741 (1966).

    Article  CAS  Google Scholar 

  44. A. Kohn et al., Acta Met. 18, 163 (1970).

    Article  CAS  Google Scholar 

  45. A. D. Le Claire, Correlation effects in diffusion in solids, in Physical Chemistry, Vol. X, Academic Press, New York and London (1970), Chapter 5.

    Google Scholar 

  46. M. J. Jones and A. D. Le Claire, Solvent self-diffusion in dilute b.c.c. solid solutions, Phil. Mag. 26, 1191(1972).

    Article  CAS  Google Scholar 

  47. A. B. Lidiard, Ionic conductivity in Handbuch der Physik, Vol. XX, Springer Verlag, Berlin (1957).

    Google Scholar 

  48. W. Van Gool (ed.), Fast Ion Transport in Solids, North-Holland, Amsterdam (1973).

    Google Scholar 

  49. L. W. Barr and A. B. Lidiard, Defects in ionic crystals, in Physical Chemistry, Vol. X, Academic Press, New York and London (1970), Chapter 7.

    Google Scholar 

  50. J. Hladik (ed.), Physics of Electrolytes, Vol. 1, Transport Processes in Solid Electrolytes and Electrodes, Academic Press, New York and London (1972).

    Google Scholar 

  51. M. D. Weber and R. J. Friauf, Interstitialcy motion in the silver halides, J. Phys. Chem. Solids 30, 407 (1969).

    Article  CAS  Google Scholar 

  52. C. P. Flynn, Point Defects and Diffusion, Clarendon Press, Oxford (1972).

    Google Scholar 

  53. G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids 3, 121 (1957).

    Article  CAS  Google Scholar 

  54. S. A. Rice, Dynamical theory of diffusion in crystals, Phys. Rev. 112, 804 (1958).

    Article  CAS  Google Scholar 

  55. C. A. Wert, Diffusion coefficient of C in Fe, Phys. Rev. 79, 601 (1950).

    Article  CAS  Google Scholar 

  56. M. D. Feit, Some formal aspects of a dynamical theory of diffusion, Phys. Rev. 133, 1223 (1971).

    Google Scholar 

  57. M. D. Feit, Dynamical theory of diffusion. II. Comparison with rate theory and the impurity isotope effect, Phys. Rev. B 5, 2145 (1972).

    Article  Google Scholar 

  58. C. P. Flynn and M. Stoneham, Quantum theory of diffusion with applications to light interstitials in metals, Phys. Rev. 131, 3966 (1970).

    Google Scholar 

  59. J. N. Sherwood (ed.), Diffusion processes, Gordon and Breach, London (1971).

    Google Scholar 

  60. A. P. Batra, Anisotropic isotopic effect for diffusion of Zn and Cd in Zn, Phys. Rev. 159, 487 (1967).

    Article  CAS  Google Scholar 

  61. N. L. Peterson, L. W. Barr, and A. D. Le Claire, Isotope effect for Ag diffusion in AgBr and AgCl, J. Physics C 6, 2020 (1973).

    Article  CAS  Google Scholar 

  62. S. J. Rothman et al., Temperature dependence of the isotope effect for diffusion of Na in NaCl, J. Phys. Chem. Solids 33, 1061 (1972).

    Article  CAS  Google Scholar 

  63. W. K. Cheo, N. L. Peterson, and W. T. Reeves, Isotope effect for cation self-diffusion in CoO crystals, Phys. Rev. 186, 887 (1969).

    Article  Google Scholar 

  64. M. L. Volpe, N. L. Peterson, and J. Reddy, Isotope effect for cation self-diffusion in single crystals of NiO, Phys. Rev. B 3, 1417 (1971).

    Article  Google Scholar 

  65. J. N. Mundy, Effect of pressure on the isotope effect in sodium self-diffusion, Phys. Rev. 133, 2431 (1971).

    Google Scholar 

  66. S. J. Rothman, N. L. Peterson, and J. T. Robinson, Isotope effect for self-diffusion in single crystals of Ag, Phys. Stat. Sol. 39, 635 (1970).

    Article  CAS  Google Scholar 

  67. H. B. Huntington, M. D. Feit, and D. Lortz, Dynamic studies of vacancy motion, Crystal Lattice Defects 1, 193 (1970).

    CAS  Google Scholar 

  68. B. N. Narabari Achar, Lattice dynamical theory of the diffusion process. I. Isotope effect in cubic metals, Phys. Rev. 132, 3848 (1970).

    Google Scholar 

  69. H. I. Aaronson (ed.), Diffusion, American Society of Metals, Ohio (1974).

    Google Scholar 

  70. A. S. Nowick and J. J. Burton (eds.), Diffusion in Solids. Recent Developments, Academic Press, New York (1974).

    Google Scholar 

  71. A Seeger et al. (eds.), Vacancies and Interstitials in Metals, North-Holland, Amsterdam (1970).

    Google Scholar 

  72. D. Lazarus and N. H. Nachtrieb, in Solids Under Pressure, McGraw-Hill, New York (1963).

    Google Scholar 

  73. C. Smithells (ed.), Metals Reference Book, Butterworths, London, 4th ed., Vol. 2 (1967); 5th ed. (1974).

    Google Scholar 

  74. P. J. Harrop, Self-diffusion data in simple oxides, J. Mat. Sci. 3, 206 (1968).

    Article  CAS  Google Scholar 

  75. B. L. Sharma, Diffusion in Semiconductors, Trans. Tech. Publications, Cleveland, Ohio (1970).

    Google Scholar 

  76. D. Shaw (ed.), Atomic Diffusion in Semiconductors, Plenum Press, London and New York (1973).

    Google Scholar 

  77. P. Suptitz and J. Teltow, Transport of matter in simple ionic crystals (cubic halides), Phys. Stat. Sol. 23, 9 (1967).

    Article  Google Scholar 

  78. F. H. Wöhlbier, Diffusion Data (1967–1973) (quarterly); now Diffusion and Defect Data (1974) (Trans. Tech. Publications, Cleveland, Ohio).

    Google Scholar 

  79. Diffusion in bcc Metals, American Society for Metals, Cleveland, Ohio (1965).

    Google Scholar 

  80. A. Lodding and T. Lagerwall (eds.), Atom Transport in solids and liquids, Verlag Z. Naturforsch. Tubingen, Germany (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Bell Telephone Laboratories, Incorporated

About this chapter

Cite this chapter

Le Claire, A.D. (1976). Diffusion. In: Hannay, N.B. (eds) Treatise on Solid State Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8082-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8082-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8084-9

  • Online ISBN: 978-1-4684-8082-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics