Advertisement

Theory of Spontaneous Polarization

  • I. S. Zheludev

Abstract

In the preceding chapter we have described linear pyroelectries, assuming simply that they exhibit spontaneous polarization. We have attributed this polarization to a transformation of the crystal structure from a nonpolar paraelectric form to a polar modification. Since ferroelectrics (more precisely, ferroelectric domains) belong to the polar symmetry classes of crystals, they can be regarded as a subgroup of pyroelectric materials. The formal similarity of the symmetry of ferroelectric domains and linear pyroelectrics as well as the similar absolute values of the spontaneous polarization of these two types of crystal do not exclude the possibility of a basic difference: before the appearance of the spontaneous polarization the antiparallel directions in ferroelectrics are equivalent, but in pyroelectrics they are not. Consequently, ferroelectrics split into domains, but linear pyroelectrics do not. This means that the spontaneous polarization of linear pyroelectrics cannot be rotated by an electric field, but the corresponding polarization of ferroelectrics can, and such rotation gives rise to the well-known dielectric hysteresis.

Keywords

Barium Titanate Curie Point Internal Field Ferroelectric Phase Transition Triglycine Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson, in: Physics of Dielectrics (Proc. Second All-Union Conf., Moscow, 1958) [Russian translation], Izd. AN SSSR, Moscow-Leningrad (1960), p. 290.Google Scholar
  2. 2.
    N. N. Bogolyubov, Problems of a Dynamical Theory in Statistical Physics [in Russian], GITTL, Moscow (1946);Google Scholar
  3. 2a.
    English translation in: Studies in Statistical Mechanics, 1:5–515 (1962).Google Scholar
  4. 3.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press (1954).MATHGoogle Scholar
  5. 4.
    S. Boguslavskii, Zh. Russ. Fiz.-Khim. Obshch., Fiz. Otd., 47(5):247 (1915).Google Scholar
  6. 5.
    W. F. Brown, Jr., “Dielectrics,” in: Handbuch der Physik (ed. by S. Flügge), Vol. 17, Part 1, Springer-Verlag, Berlin (1956), p. 1.Google Scholar
  7. 6.
    Yu. N. Venevtsev, V. N. Lyubimov, S. P. Solov’ev, A. S. Viskov, and I. S. Zhdanov, Abstracts of Papers presented at Symposium on Ferromagnetism and Ferro-electricity, Leningrad, 1963 [in Russian].Google Scholar
  8. 7.
    V. L. Ginzburg, Zh. Éksp.Teor. Fiz., 15:739 (1945).Google Scholar
  9. 8.
    V. L. Ginzburg, Usp. Fiz. Nauk, 38:490 (1949).Google Scholar
  10. 9.
    : V. L. Ginzburg, Fiz. Tverd. Tela, 2:2031 (1960).MathSciNetGoogle Scholar
  11. 10.
    G. S. Zhdanov, Crystal Physics, Oliver and Boyd, Edinburgh (1965).Google Scholar
  12. 11.
    V. L. Indenbom and M. A. Chernysheva, Zh. Éksp. Teor. Fiz., 32:697 (1957).Google Scholar
  13. 12.
    W. Känzig, “Ferroelectrics and antiferroelectrics,” Solid State Phys., 4:1 (1957).CrossRefGoogle Scholar
  14. 13.
    V. I. Klyachkin, Izv. Akad. Nauk SSSR, Ser. Fiz., 24:1176 (1960).Google Scholar
  15. 14.
    V. Kh. Kozlovskii, Zh. Éksp. Teor. Fiz., 30:766 (1956).Google Scholar
  16. 15.
    V. Kh. Kozlovskii, Izv. Akad. Nauk SSSR, Ser. Fiz., 21:352 (1957).Google Scholar
  17. 16.
    I. V. Kurchatov, Ferroelectrics [in Russian], Moscow (1933);Google Scholar
  18. 16a.
    abridged French translation: I. V. Kourtschatov, Le champ moléculaire dans les diélectriques (le sel de Scignette), Hermann, Paris (1936).Google Scholar
  19. 17.
    V. N. Murzin and A. I. Demeshina, Fiz. Tverd. Tela, 6:182 (1964).Google Scholar
  20. 18.
    R. E. Pasynkov, Izv. Akad. Nauk SSSR, Ser. Fiz., 21:340 (1957).Google Scholar
  21. 19.
    G. I. Skanavi, Dokl. Akad. Nauk SSSR, 59:231 (1948).Google Scholar
  22. 20.
    G. A. Smolenskii and V. A. Isupov, Ferroelectrics (Review) [in Russian], Institut poluprovodnikov, AN SSSR, Leningrad (1958).Google Scholar
  23. 21.
    G. A. Smolenskii and N. V. Kozhevnikova, Dokl. Akad. Nauk SSSR, 76:519 (1951).Google Scholar
  24. 22.
    G. A. Smolenskii and V. Kh. Kozlovskii, Zh. Tekh. Fiz., 23:445 (1953).Google Scholar
  25. 23.
    G. A. Smolenskii and V. Kh. Kozlovskii, Zh. Éksp. Teor. Fiz., 26:684 (1954).Google Scholar
  26. 24.
    L. N. Syrkin, Kristallografiya, 1:274 (1956).Google Scholar
  27. 25.
    H. Fröhlich, Theory of Dielectrics, 2nd ed., Oxford University Press (1958).MATHGoogle Scholar
  28. 26.
    V. Y. Khozyainov, Abstracts of Papers presented at Symposium on Ferromagnetism and Ferroelectricity, Leningrad, 1963 [in Russian].Google Scholar
  29. 27a.
    L. P. Kholodenko, Zh. Éksp. Teor. Fiz., 31:244 (1956);Google Scholar
  30. 27b.
    L. P. Kholodenko, Kristallografiya, 1:393 (1956);Google Scholar
  31. 27c.
    L. P. Kholodenko, Izv. Akad. Nauk SSSR, Ser. Fiz., 21:368 (1957).Google Scholar
  32. 28a.
    A. F. Yatsenko, Izv. Akad. Nauk SSSR, Ser. Fiz., 22:1456 (1958);Google Scholar
  33. 28b.
    A. F. Yatsenko, in: Physics of Dielectrics (Proc. Second All-Union Conf., Moscow, 1958) [in Russian], Izd. AN SSSR, Moscow (1960), p. 314.Google Scholar
  34. 29.
    W. Ackermann, Ann. Physik, 46:197 (1915).ADSCrossRefGoogle Scholar
  35. 30.
    A. S. Barker, Jr. and M. Tinkham, Phys. Rev., 125:1527 (1962).ADSCrossRefGoogle Scholar
  36. 31.
    C. A. Beevers and W. Hughes, Proc. Roy. Soc. (London), 177:251 (1941).ADSCrossRefGoogle Scholar
  37. 32.
    S. Boguslawski, Physik. Z., 15:283, 569 (1914).Google Scholar
  38. 33.
    S. Boguslawski, Physik. Z., 15:805 (1914).Google Scholar
  39. 34.
    M. Born, Physik. Z., 23:125 (1922).Google Scholar
  40. 35.
    M. Born, Rev. Mod. Phys., 17:245 (1945).MathSciNetADSMATHCrossRefGoogle Scholar
  41. 36.
    W. Cochran, Adv. Phys., 9:387 (1960).ADSCrossRefGoogle Scholar
  42. 37.
    M. H. Cohen, Phys. Rev., 84:369 (1951).ADSCrossRefGoogle Scholar
  43. 38.
    A. F. Devonshire, Phil. Mag., 40:1040 (1949).Google Scholar
  44. 39.
    A. F. Devonshire, Phil. Mag., Suppl., 3:85 (1954).Google Scholar
  45. 40.
    A. F. Devonshire, Phil. Mag., 2:1027 (1957).ADSMATHCrossRefGoogle Scholar
  46. 41.
    V. Dvorak and V. Janovec, Czech. J. Phys., B12:461 (1962).ADSCrossRefGoogle Scholar
  47. 42.
    R. H. Fowler, Proc. Roy. Soc. (London), A149:1 (1935).ADSGoogle Scholar
  48. 43.
    J. H. Gibbs, Phys. Rev., 94:292 (1954).ADSMATHCrossRefGoogle Scholar
  49. 44.
    A. Jaskiewicz and H. Konwent, Acta Phys. Polon., 21:509 (1962).Google Scholar
  50. 45.
    E. T. Jaynes, Ferroelectricity, Princeton University Press, New Jersey (1953).MATHGoogle Scholar
  51. 46.
    E. T. Jaynes and E. P. Wigner, Phys. Rev., 79:213 (1950).CrossRefGoogle Scholar
  52. 47.
    W. Kinase, Progr. Theoret. Phys. (Kyoto), 13:529 (1955).ADSCrossRefGoogle Scholar
  53. 48.
    C. Kittel, Phys. Rev., 82:729 (1951).ADSMATHCrossRefGoogle Scholar
  54. 49.
    J. Larmor, Proc. Roy. Soc. (London), 99:1 (1921).ADSCrossRefGoogle Scholar
  55. 50.
    J. T. Last, Phys. Rev., 105:1740 (1957).ADSCrossRefGoogle Scholar
  56. 51a.
    W. P. Mason, Phys. Rev., 72:854 (1947);ADSCrossRefGoogle Scholar
  57. 51b.
    W. P. Mason, Piezoelectric Crystals and Their Applications to Ultrasonics, Van Nostrand, New York (1950).Google Scholar
  58. 52.
    W. P. Mason and B. T. Matthias, Phys. Rev., 74:1622 (1948).ADSCrossRefGoogle Scholar
  59. 53.
    B. T. Matthias, Phys. Rev., 75:1771 (1949).ADSCrossRefGoogle Scholar
  60. 54.
    T. Mitsui, Phys. Rev., 111:1259 (1958).ADSCrossRefGoogle Scholar
  61. 55.
    T. Nagamiya, Progr. Theoret. Phys. (Kyoto), 7:275 (1952).ADSCrossRefGoogle Scholar
  62. 56.
    P. S. Narayanan and K. Vedam, Z. Physik, 163:158 (1961).ADSCrossRefGoogle Scholar
  63. 57.
    J. Pirenne, Physica, 15:1019 (1949).MathSciNetADSCrossRefGoogle Scholar
  64. 58.
    A. K. Rajagopal and R. Srinivasan, J. Phys. Chem. Solids, 23:633 (1962).ADSCrossRefGoogle Scholar
  65. 59.
    M. E. Senko, Phys. Rev., 121:1599 (1961).ADSCrossRefGoogle Scholar
  66. 60.
    J. C. Slater, J. Chem. Phys., 9:16 (1941).ADSCrossRefGoogle Scholar
  67. 61.
    J. C. Slater, Phys. Rev., 78:748 (1950).ADSMATHCrossRefGoogle Scholar
  68. 62.
    W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. Howarth, Phys. Rev., 126:1710 (1962).ADSCrossRefGoogle Scholar
  69. 63.
    C. C. Stephenson and H. E. Adams, J. Am. Chem. Soc., 66:1409 (1944).CrossRefGoogle Scholar
  70. 64a.
    Y. Takagi, Proc. Phys. Math. Soc. Japan, 23:44 (1941);MATHGoogle Scholar
  71. 64b.
    Y. Takagi, J. Phys. Soc. Japan, 3:271 (1948).ADSCrossRefGoogle Scholar
  72. 65.
    Y. Takagi, Phys. Rev., 85:315 (1952).ADSMATHCrossRefGoogle Scholar
  73. 66.
    Y. Takagi, Proc. Intern. Conf. on Theoret. Phys., Kyoto and Tokyo, 1953, publ. by Science Council of Japan, Tokyo (1954), p. 824.Google Scholar
  74. 67.
    H. Takahashi, Proc. Phys. Math. Soc. Japan, 23:1069 (1941).Google Scholar
  75. 68.
    A. R. Ubbelohde and I. Woodward, Proc. Roy. Soc. (London), A185:448 (1946).ADSGoogle Scholar
  76. 69.
    A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Bull. Am. Phys. Soc., 4:246 (1959).Google Scholar
  77. 70.
    I. S. Zheludev, Proc. Indian Acad. Sci., A57:361 (1963).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • I. S. Zheludev
    • 1
  1. 1.Institute of CrystallographyThe Academy of Sciences of the USSRMoscowUSSR

Personalised recommendations