Skip to main content

Domain Structure of Ferroelectrics and Antiferroelectrics

  • Chapter
Physics of Crystalline Dielectrics

Abstract

Assemblies of spontaneously polarized unit cells form regions known as domains. All the unit cells within a domain in a ferroelectric are oriented identically. Consequently, each domain has a macroscopic spontaneous electric polarization. The directions of the spontaneous polarizations of neighboring domains in a ferroelectric make definite angles with one another. Domain walls (boundaries) in ferroelectrics should be considered not only as having geometrical form but also as being electrically neutral and corresponding to a minimum of the energy of a crystal. Consequently, the dipoles in neighboring domains should be oriented in such a way that, at a wall, the projection of the polarization vector of one domain should be equal in magnitude and opposite in sign to the projection of the polarization vector of another (neighboring) domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. N. Belyaev, N. S. Novosil’tsev, E. G. Fesenko, and A. L. Khodakov, Dokl. Akad. Nauk SSSR, 83:675 (1952).

    Google Scholar 

  2. I. S. Zheludev and V. F. Parvov, Kristallografiya, 1:482–483 (1956).

    Google Scholar 

  3. I. S. Zheludev, I. S. Rez, A. S. Sonin, V. V. Gladkin, and V. M. Gurevich, in: Physics of Dielectrics (Proc. Second All-Union Conf., Moscow, 1958) [in Russian] Izd. AN SSSR, Moscow (1960).

    Google Scholar 

  4. I. S. Zheludev, A. A. Filimonov, V. A. Yurin, and N. A. Romanyuk, Kristallografiya, 6:676 (1961).

    Google Scholar 

  5. I. S. Zheludev and V. A. Yurin, Izv. Akad. Nauk SSSR, Ser. Fiz., 20:211 (1956).

    Google Scholar 

  6. V. A. Zhirnov, Zh. Éksp. Teor. Fiz., 35:1175 (1958).

    Google Scholar 

  7. V. L. Indenbom and M. A. Chernysheva, Zh. Éksp. Teor. Fiz., 32:697 (1957).

    Google Scholar 

  8. V. P. Konstantinova, Kristallografiya, 7:748 (1962).

    Google Scholar 

  9. V. P. Konstantinova and M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals [in Russian], Izd. AN SSSR, Moscow (1960).

    Google Scholar 

  10. V. A. Meleshina, I. S. Zheludev, and I. S. Rez, Kristallografiya, 5:322 (1960).

    Google Scholar 

  11. N. A. Romanyuk and I. S. Zheludev, Kristallografiya, 5:904 (1960).

    Google Scholar 

  12. G. V. Spivak, É. Igras, and I. S. Zheludev, Dokl. Akad. Nauk SSSR, 122:54 (1958).

    Google Scholar 

  13. G. V. Spivak, É. Igras, I. A. Pryamkova, and I. S. Zheludev, Kristallografiya, 4:123 (1959).

    Google Scholar 

  14. S. D. Toshev, Kristallografiya, 8:680 (1963);

    Google Scholar 

  15. B. A. Strukov and S. D. Toshev, Kristallografiya, 9:426 (1964).

    Google Scholar 

  16. M. A. Chernysheva, Dokl. Akad. Nauk SSSR, 91:87 (1953).

    Google Scholar 

  17. V. A. Yurin, A. S. Baberkin, and I. S. Zheludev, Kristallografiya, 7:147 (1962).

    Google Scholar 

  18. R. Abe, Phys. Soc. Japan, 13:2.4–1 (1958).

    Google Scholar 

  19. H. M. Bárkla and D. M. Finlayson, Phil. Mag., 44:109 (1953).

    Google Scholar 

  20. J. Časlávský and M. Polcatová, Czech. J. Phys., 14:454 (1964).

    Article  Google Scholar 

  21. M. H. Cohen, Phys. Rev., 84:368 (1951).

    Article  ADS  Google Scholar 

  22. L. E. Cross and B. J. Nicholson, Phil. Mag., 46:453(1955).

    Google Scholar 

  23. A. G. Chynoweth and W. L. Feldmann, J. Phys. Chem. Solids, 15:225 (1960).

    Article  ADS  Google Scholar 

  24. P. W. Forsbergh, Jr., Phys. Rev., 76:1187 (1949).

    Article  ADS  Google Scholar 

  25. J. Fousek and B. Březina, Czech. J. Phys., 11:261 (1961).

    Article  ADS  Google Scholar 

  26. J. A. Hooton and W. J. Merz, Phys. Rev., 98:409 (1955).

    Article  ADS  Google Scholar 

  27. C. Jaccard, W. Känzig, and M. Peter, Helv. Phys. Acta, 26:521 (1953).

    Google Scholar 

  28. F. Jona, G. Shirane, and R. Pepinsky, Phys. Rev., 97:1584 (1955).

    Article  ADS  Google Scholar 

  29. W. Kinase, Progr. Theoret. Phys. (Kyoto), 13:529 (1955).

    Article  ADS  Google Scholar 

  30. W. Kinase, Busseiron-Kenkyu, 4:721 (1958).

    Google Scholar 

  31. W. Kinase and H. Takahashi, J. Phys. Soc. Japan, 12:464 (1957).

    Article  ADS  Google Scholar 

  32. C. Kittel, Rev. Mod. Phys., 21:541 (1949).

    Article  ADS  Google Scholar 

  33. W. Känzig and R. Sommerhaider, Helv. Phys. Acta, 26:603 (1953).

    Google Scholar 

  34. E. A. Little, Massachusetts Inst. Technology, Report No. 87 (1954).

    Google Scholar 

  35. W. J. Merz, Phys. Rev., 88:421 (1952).

    Article  ADS  Google Scholar 

  36. W. J. Merz, Phys. Rev., 95:690 (1954).

    Article  ADS  Google Scholar 

  37. B. Matthias and A. von Hippel, Phys. Rev., 73:1378 (1948).

    Article  ADS  Google Scholar 

  38. T. Mitsui and J. Furuichi, Phys. Rev., 90:193 (1953).

    Article  ADS  Google Scholar 

  39. S. Nomura, Y. Asao, and S. Sawada, J. Phys. Soc. Japan, 16:917 (1961).

    Article  ADS  Google Scholar 

  40. E. A. Wood, Acta Cryst., 4:353 (1951).

    Article  Google Scholar 

  41. É. Igras, G. V. Spivak, and I. S. Zheludev, Kristallografiya, 4:121 (1959).

    Google Scholar 

  42. W. Känzig, “Ferroelectrics and antiferroelectrics,” Solid State Phys., 4:1 (1957).

    Article  Google Scholar 

  43. E. G. Fesenko, Dokl. Akad. Nauk SSSR, 88:785 (1953).

    Google Scholar 

  44. L. A. Shuvalov, K. S. Aleksandrov, and I. S. Zheludev, Kristallografiya, 4:130 (1959).

    Google Scholar 

  45. H. Gränicher, W. M. Meier, and W. Petter, Helv. Phys. Acta, 27:216 (1954).

    Google Scholar 

  46. A. von Hippel, Rev. Mod. Phys., 22:221 (1950).

    Article  ADS  Google Scholar 

  47. K. Hirakawa, J. Phys. Soc. Japan, 7:331 (1952).

    Article  Google Scholar 

  48. F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press, Oxford (1962).

    Google Scholar 

  49. H. D. Megaw, Ferroelectricity in Crystals, Methuen, London (1957).

    Google Scholar 

  50. G. L. Pearson and W. L. Feldmann, J. Phys. Chem. Solids, 9:28 (1959).

    Article  ADS  Google Scholar 

  51. S. Sawada, R. Ando, and S. Nomura, Phys. Rev., 82:952 (1951).

    Article  ADS  Google Scholar 

  52. R. Ueda and T. Ichinokawa, Phys. Rev., 80:1106 (1950).

    Article  ADS  Google Scholar 

  53. R. Ueda and J. Kobayashi, Phys. Rev., 91:1565 (1953).

    Article  ADS  Google Scholar 

  54. P. Vousden, Acta Cryst., 4:545 (1951).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Zheludev, I.S. (1971). Domain Structure of Ferroelectrics and Antiferroelectrics. In: Physics of Crystalline Dielectrics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8076-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8076-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8078-8

  • Online ISBN: 978-1-4684-8076-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics