Structure and Crystal Chemistry of Oxygen-Octahedral Ferroelectrics and Antiferroelectrics

  • I. S. Zheludev


Experimental investigations of pyroelectric materials (polar crystals) have demonstrated that they can be divided into linear and nonlinear dielectrics in accordance with their behavior in electric fields. The electric polarization P of linear dielectrics depends linearly on the electric field E, while the electric polarization of nonlinear dielectrics is a nonlinear function of the electric field. The most important materials among nonlinear solid dielectrics are ferroelectric crystals, which can exhibit (in a limited range of temperatures) a spontaneous polarization Ps in the absence of an external electric field and which can split into spontaneously polarized regions known as domains.* Thus, ferroelectrics can be considered formally as a subclass of polar crystals (pyroelectric materials): we can say that ferroelectrics are those pyroelectric materials which split into domains. In fact, pyroelectric crystals (we shall use this term to denote only those polar crystals which do not split into domains) differ considerably from ferroelectrics and these differences will be discussed in both volumes of this book.


Lithium Niobate Barium Titanate Spontaneous Polarization Ferroelectric Phase Transition Oxygen Octahedra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. N. Venevtsev and G. S. Zhdanov, Izv. Akad. Nauk SSSR, Ser. Fiz., 20:178Google Scholar
  2. 2a.
    I. S. Zheludev and L. A. Shuvalov, Kristallografiya, 1:681 (1956).Google Scholar
  3. 2b.
    I. S. Zheludev and L. A. Shuvalov, Izd. Akad. Nauk SSSR, Ser. Fiz., 21:264Google Scholar
  4. 3.
    G. A. Smolenskii and N. Ts. Kozhevnikova, Dokl. Akad. Nauk SSSR, 76:513 (1951).Google Scholar
  5. 4.
    A. S. Sonin and I. S. Zheludev, Kristallografiya, 4:487 (1959).Google Scholar
  6. 5.
    A. F. Yatsenko, Izv. Akad. Nauk SSSR, Ser. Fiz., 22:1456 (1958).Google Scholar
  7. 6.
    P. C. Bailey, Thesis, Bristol University (1952).Google Scholar
  8. 7.
    R. N. Cotts and W. D. Knight, Phys. Rev., 96:1285 (1954).ADSCrossRefGoogle Scholar
  9. 8.
    B. C. Frazer, H. R. Danner, and R. Pepinsky, Phys. Rev., 100:745 (1955).ADSCrossRefGoogle Scholar
  10. 9a.
    A. W. Hornig, R. C. Rempel, and H. E. Weaver, Phys. Rev. Letters, 1:284(1958).ADSCrossRefGoogle Scholar
  11. 9b.
    A. W. Hornig, R. C. Rempel, and H. E. Weaver, J. Phys. Chem. Solids, 10:1 (1959).ADSCrossRefGoogle Scholar
  12. 10.
    F. Jona, G. Shirane, F. Mazzi, and R. R. Pepinsky, Phys. Rev. 105:849 (1957).ADSCrossRefGoogle Scholar
  13. 11.
    F. Jona, G. Shirane, and R. Pepinsky, Phys. Rev., 98:903 (1955).ADSCrossRefGoogle Scholar
  14. 12.
    W. L. Kehl, R. C. Hay, and D. J. Wahl, J. Appl. Phys., 23:212 (1952).ADSCrossRefGoogle Scholar
  15. 13.
    H. F. Kay and P. C. Bailey, Acta Cryst., 10:219 (1957).CrossRefGoogle Scholar
  16. 14.
    H. F. Kay and P. Vousden, Phil. Mag., 40:1019 (1949).Google Scholar
  17. 15.
    J. T. Last, Phys. Rev., 105:1740 (1957).ADSCrossRefGoogle Scholar
  18. 16.
    W. Low and D. Shaltiel, Phys. Rev. Letters, 1:51 (1958).ADSCrossRefGoogle Scholar
  19. 17.
    R. T. Mara, G. B. B. M. Sutherland, and H. V. Tyrell, Phys. Rev., 96:801(1954).ADSCrossRefGoogle Scholar
  20. 18.
    H. D. Megaw, Ferroclectricity in Crystals, Methuen, London (1957).Google Scholar
  21. 19.
    R. G. Rhodes, Acta Cryst., 4:105 (1951).CrossRefGoogle Scholar
  22. 20.
    E. Sawaguchi, J. Phys. Soc. Japan, 7:110 (1952).CrossRefGoogle Scholar
  23. 21.
    E. Sawaguchi, H. Maniwa, and S. Hoshino, Phys. Rev., 83:1078 (1951).ADSCrossRefGoogle Scholar
  24. 22.
    G. Shirane, H. Danner, A. Pavlovic, and R. Pepinsky, Phys. Rev., 93:672 (1954).ADSCrossRefGoogle Scholar
  25. 23.
    G. Shirane and S. Hoshino, J. Phys. Soc. Japan, 6:265 (1951).ADSCrossRefGoogle Scholar
  26. 24.
    G. Shirane, F. Jona, and R. Pepinsky, Proc. IRE, 43:1738 (1955).CrossRefGoogle Scholar
  27. 25.
    G. Shirane, R. Newnham, and R. Pepinsky, Phys. Rev., 96:581 (1954).ADSCrossRefGoogle Scholar
  28. 26.
    G. Shirane and R. Pepinsky, Phys. Rev., 91:812 (1953).ADSCrossRefGoogle Scholar
  29. 27.
    G. Shirane, R. Pepinsky, and B. C. Frazer, Phys. Rev., 97:1179 (1955).ADSCrossRefGoogle Scholar
  30. 28.
    R. Ueda and G. Kobayashi, Phys. Rev., 91:1565 (1953).ADSCrossRefGoogle Scholar
  31. 29.
    P. Vousden, Acta Cryst., 4:545 (1951).CrossRefGoogle Scholar
  32. 30.
    G. S. Zhdanov, Crystal Physics, Oliver and Boyd, Edinburgh and London (1965).Google Scholar
  33. 31.
    W. Känzig, “Ferroelectrics and antiferroelectrics”, Solid State Phys. 4:1(1957).CrossRefGoogle Scholar
  34. 32.
    F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press, Oxford (1962).Google Scholar
  35. 33.
    J. Fousek, Českoslov. Časopis Fys., A11:495 (1961).Google Scholar
  36. 34.
    B. T. Matthias, Phys. Rev., 75:1771 (1949).ADSCrossRefGoogle Scholar
  37. 35.
    W. J. Merz, “Ferroelectricity,”in: Progressin Dielectrics, 4:101 (1962).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • I. S. Zheludev
    • 1
  1. 1.Institute of CrystallographyThe Academy of Sciences of the USSRMoscowUSSR

Personalised recommendations