Mössbauer Studies of Internally Nitrided and Oxidized Alloys

  • G. P. Huffman
  • H. H. Podgurski


The reactions between mobile interstitial atoms and substitutional solute atoms in alloys is a topic of considerable metallurgical interest. Internally nitrided Fe base alloys frequently exhibit significantly improved mechanical properties, such as high hardness and yield strength values. Alloy oxidation (both internal and external), on the other hand, is generally undesirable, and the aim of most research in this area is to prevent or limit such oxidation. Both subjects have been extensively studied,(1,2) and many of the most interesting aspects of both problems involve internally formed nitride or oxide „phases“ which are dispersed on an extremely fine scale, ranging from molecular clusters to fine platelets with thicknesses of the order of 10 to 20 Å. Mössbauer spectroscopy, with its high sensitivity to valence state and local atomic environment is an excellent method of studying such systems and in the current paper, some recent work in this area is summarized.


Solute Atom Nitride Phase Octahedral Interstice Internally NITRIDED Nitrided Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review of work on internally nitrided alloys, see D. H. Jack and K. H. Jack, Mat. Sci. and Eng. 11, 1 (1973).CrossRefGoogle Scholar
  2. 2.
    Good reviews of work on alloy oxidation may be found in the books, Oxidation of Metals and Alloys, by O. Kubaschewski and B. E. Hopkins (Academic Press, N.Y., 1962 ) and Oxidation of Metals, by Karl Hauffe ( Plenum Press, N.Y., 1965 ).Google Scholar
  3. 3.
    G. P. Huffman and H. H. Podgurski, Acta Met. 23, 1367 (1975).CrossRefGoogle Scholar
  4. 4.
    G. P. Huffman and H. H. Podgurski, Acta Met., 21, 449 (1973).CrossRefGoogle Scholar
  5. 5.
    I. Vincze and G. Grumer, Phys. Rev. Letters 28, 178 (1972).CrossRefGoogle Scholar
  6. 6.
    A. Asano and L. H. Schwartz, Proc. 19th Annual Conf. on Magnetism and Magnetic Materials-1973, part I, p.262, (A.I.P. Conf. Proc. No. 18, 1974 ).Google Scholar
  7. 7.
    D. L. Speirs, W. Roberts, P. Grieveson and K. H. Jack, Proc. Second Int. Conf. on Strength of Metals, Monterey, Cal., 1970, A.S.M., P. 601 (1970).Google Scholar
  8. 8.
    J. H. Driver, D. C. Unthank and K. H. Jack, Phil. Mag. 26, 1227 (1972).CrossRefGoogle Scholar
  9. 9.
    S. S. Brenner and S. R. Goodman, Scripta Met. 5, 865 (1971).CrossRefGoogle Scholar
  10. 10.
    J. H. Driver and J. M. Papazian, Acta Met. 21, 1139 (1973).CrossRefGoogle Scholar
  11. 11.
    L. J. Cuddy and H. H. Podgurski, unpublished research.Google Scholar
  12. 12.
    H. L. Marcus, M. E. Fine and L. H. Schwartz, J. Appl. Phys. 38, 4750 (1967).CrossRefGoogle Scholar
  13. 13.
    P. Z. Hien and V. L. Shpinel, Soy. Phys. JETP 17, 268 (1963).Google Scholar
  14. 14.
    G. P. Huffman, F. C. Schwerer, R. M. Fisher and T. Nagata; Proc. Fifth Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 5, Vol. 3, p. 2779 (Pergamon, 1974 ).Google Scholar
  15. 15.
    D. H. Jack, personal communication.Google Scholar
  16. 16.
    J. Friedel, Dislocations, Ch.15 (Addison-Wesley, 1964 ).Google Scholar
  17. 17.
    Measured by Richard Wagner, personal communication.Google Scholar
  18. 18.
    J. K. Lees and P. A. Flinn, J. Chem. Phys. 48, 882 (1968).CrossRefGoogle Scholar
  19. 19.
    H. H. Podgurski and G. P. Huffman, Nature, Phys. Sci. 237, 77 (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • G. P. Huffman
    • 1
  • H. H. Podgurski
    • 1
  1. 1.U. S. Steel Research LaboratoryMonroevilleUSA

Personalised recommendations