Role of Oxygen Motion in the Temperature Dependence of ΔE in Oxyhemoglobin and Model Compounds

  • G. Lang
  • K. Spartalian


Hemoglobin is the most intensively studied of the biological macromolecules; it has served and continues to serve as the proving ground for techniques and ideas which are leading toward a detailed understanding of life processes in general. In view of the fact that reversible combination with oxygen is the primary function of this molecule, it is a sobering thought to realize that the nature of the attachment of the oxygen is only poorly understood. There is no general agreement on the disposition of bonding electrons. General agreement as to the geometric arrangement of the oxygen and the iron atom of the binding site has been achieved only recently. The oxygenated form of hemoglobin, having spin-paired electrons, is EPR-silent. Fortunately, however, a site-specific probe is available in the form of 57Fe Mössbauer spectroscopy.


Model Compound Quadrupole Splitting Electric Field Gradient Iron Nucleus Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Karger, Z. Naturforsch. 17B 137 (1962).Google Scholar
  2. 2.
    U. Gonser, R. W. Grant, and J. Kregzde, Appl. Phys. Lett. 3, 189 (1963).CrossRefGoogle Scholar
  3. 3.
    J. Maling and M. Weissbluth, in “Electronic Aspects of Biochemistry,” 93 (1963).Google Scholar
  4. 4.
    U. Gonser, R. W. Grant, and J. Kregzde, Science 143, 680 (1964).CrossRefGoogle Scholar
  5. 5.
    G. Lang and W. Marshall, Proc. Phys. Soc. 87, 3 (1966).CrossRefGoogle Scholar
  6. 6.
    G. Lang, Quart. Rev. Biophys. 3, 1 (1970).Google Scholar
  7. 7.
    L. Marchant, M. Sharrock, B. M. Hoffman, and E. Münck, Proc. Nat. Acad. Sci. USA 69, 2396 (1972).CrossRefGoogle Scholar
  8. 8.
    J. P. Collman, R. R. Gagne, C. A. Reed, T. R. Halbert, G. Lang, W. T. Robinson, J. Amer. Chem. Soc. 97, 1427 (1975).CrossRefGoogle Scholar
  9. 9.
    J. P. Collman, R. R. Gagne, C. A. Reed, W. T. Robinson, and G. A. Rodley, Proc. Nat. Acad. Sci. USA 71, 1326 (1974).CrossRefGoogle Scholar
  10. 10.
    B. Window, J. Phys. E2, 894 (1969).Google Scholar
  11. 11.
    G. Lang and B. W. Dale, Nuc. Inst. and Meth. 116, 567 (1974).CrossRefGoogle Scholar
  12. 12.
    J. A. Tjon and M. Blume, Phys. Rev. 165, 456 (1968).CrossRefGoogle Scholar
  13. 13.
    K. Spartalian, G. Lang, J. P. Collman, R. R. Gagne, and C. A. Reed, J. Chem. Phys. 63, 5375 (1975).CrossRefGoogle Scholar
  14. 14.
    M. Perutz (private communication).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • G. Lang
    • 1
  • K. Spartalian
    • 1
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUSA

Personalised recommendations