Mössbauer Parameters of Rubredoxin, a One-Iron-Sulfur Protein

  • P. Debrunner
  • C. Schulz


Rubredoxins are red, iron-containing redox proteins. They are found in many bacteria and are among the simplest iron proteins known. 1) They typically consist of a polypeptide chain of 50–60 amino acids which binds a single iron atom by means of four characteristically located cysteine residues. The three-dimensional structure of rubredoxin from Clostridium pasteurianum, the particular protein under study here, has been determined by x-ray diffraction.2) It is found that the thiolate sulfurs of the four cysteine residues bind to the iron in a roughly tetóahedral array. The iron-sulfur distances range from 2.05 Å to 2.34 Å according to the x-ray data2), and the local symmetry at the iron site is C1 only. Recent EXAFS studies suggest smaller differences in the Fe-S distances3), but the symmetry is still expected to be very low.


Spin Relaxation Internal Field Mossbauer Spectrum Clostridium Pasteurianum Orbital Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    W. A. Eaton and W. Lovenberg in “Iron-Sulfur Proteins” II, p. 131. W. Lovenberg, ed. Academic Press, New York (1973).Google Scholar
  2. 2).
    K. D. Watenpaugh, L. C. Sieker, J. R. Herriott and L. H. Jensen, Acta Cryst. B29, 943 (1973).CrossRefGoogle Scholar
  3. 3).
    R. G. Shulman, P. Eisenberger, W. E. Blumberg and N. A. Stombaugh, Proc. Nat. Acad. Sci. USA 72, 4003 (1975).CrossRefGoogle Scholar
  4. 4).
    W. Lovenberg and W. M. Williams, Biochemistry 8, 141 (1969).CrossRefGoogle Scholar
  5. 5).
    Iron-Sulfur Proteins, W. Lovenberg, ed. Academic Press New York (1973).Google Scholar
  6. 6).
    R. H. Holm in“Iron-Sulfur Proteins” III, W. ed. Academic Press, New York (1976).Google Scholar
  7. 7).
    W. D. Phillip, M. Poe, J. F. Weiher, C. C. McDonald and W. Lovenberg, Nature 227, 574 (1970).CrossRefGoogle Scholar
  8. 8).
    K. K. Rao, M. C. W. Evans, R. Cammack, D. O. Hall, C. L. Thompson, P. J. Jackson and C. E. Johnson, Biochem, J. 129, 1063 (1972).Google Scholar
  9. 9).
    G. H. Loew et al., Theor. Chim. Acta (Berl.) 32, 217 (1974); 33, 125, 137, 147 (1974).CrossRefGoogle Scholar
  10. 10).
    J. G. Norman, Jr. and S. C. Jackels, J. Amer. Chem. Soc. 97, 3833 (1975).CrossRefGoogle Scholar
  11. 11).
    R W. Lane, J. A. Ibers, R. B. Frankel and R. H. Holm, Proc. Nat. Acad. Sci. USA 72, 2868 (1975).CrossRefGoogle Scholar
  12. 12).
    J. Peisach, W. E. Blumberg, E, T. Lode and M. J. Coon, J. Biol. Chem. 246, 5877 (1971).Google Scholar
  13. 13).
    H. H. Wickman, M. P. Klein and D. A. Shirley, J. Chem. Phys. 42, 2113 (1965) .Google Scholar
  14. 14).
    G. Lang, R. Aasa, K. Garbett and R. J. P. Williams, J. Chem. Phys. 55, 4539 (1971).CrossRefGoogle Scholar
  15. 15).
    K. Spartalian, W. T. Oosterhuis and J. B. Neilands, J. Chem. Phys. 62, 3538 (1975).CrossRefGoogle Scholar
  16. 16).
    W. E. Blumberg and J. Peisach, Ann. New York Acad. Sci. 222, 539 (1973).CrossRefGoogle Scholar
  17. 17).
    T. Castner, Jr., G. S. Newell, W. C. Holton and C. P. Slichter, J. Chem. Phys. 32, 668 (1960).CrossRefGoogle Scholar
  18. 18).
    E. Münck, P. G. Debrunner, J. C. M. Tsibris and I. C. Gunsalus, Biochemistry 11, 853 (1972).Google Scholar
  19. 19).
    W. M. Reiff, “Mössbauer Effect Methodology” 8, I. J. Gruverman and C. W. Seidel, ed. p. 89, Plenum Press, New York (1973).Google Scholar
  20. 20).
    A. Kostikas, V. Petrouleas, A. Simopoulos, D. Coucouvanis and D. G. Holah, submitted to Chem. Phys. Letters.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • P. Debrunner
    • 1
  • C. Schulz
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations