Skip to main content

Hemes, Iron Sulfur Centers, and Single Crystals: Some Aspects of Recent Biological Work

  • Chapter
Mössbauer Effect Methodology

Abstract

Nature abounds with a wide variety of iron containing biomolecules. These are intimately involved in practically all life sustaining processes and in that capacity they serve such functions as catalysis (nitrogenase and cytochrome P450, discussed below, are examples), electron transport (iron-sulfur proteins, many heme proteins, and rubredoxin), transport and storage of diatomic molecules (hemoglobin and myoglobin), and iron transport and storage. A typical biomolecule may have a molecular weight of l04 to 105, consisting for the most part of protein, a chain of amino acids folded in a specific way to stabilize a well-defined three-dimensional structure. Many biomolecules contain one or a few metal centers which are the focal point of action, i.e. the metal is at the “business center” of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Münck, P.G. Debrunner, J.C.M. Tsibris, and I.C. Gunsalus, Biochemistry 11, 855 (1972).

    Article  Google Scholar 

  2. W.R. Dunham, A.J. Bearden, I.T. Salmeen, G. Palmer, W.H. Orme-Johnson, and H. Beinert, Biochim. Biophys. Acta 253, 134 (1971).

    Article  CAS  Google Scholar 

  3. C.W. Carter, Jr., J. Kraut, S.T. Freer, R.A. Alden, L.C. Adman, and L.H. Jensen, Proc. Nat. Acad. Sci 69, 3526 (1972).

    Article  CAS  Google Scholar 

  4. W.H. Orme-Johnson, W.D. Hamilton, T. Ljones, M.Y.Tso, R.H. Burris, V.K. Shaw, and W. J. Brill, Proc. Nat. Acad. Sci. 69, 3142 (1972).

    Article  CAS  Google Scholar 

  5. E. Münck, H. Rhodes, W.H. Orme-Johnson, L.C. Davis, W.J. Brill, and V.K. Shah, Biochim. Biophys. Acta 400 32 (1975).

    Google Scholar 

  6. B.E. Smith and G. Lang, Biochem. J. 137 169 (1974).

    Google Scholar 

  7. E. Münck, J.L. Groves, T.A. Tumollillo, and P.G. Debrunner, Computer Phys. Commun. 5, 225 (1973).

    Article  Google Scholar 

  8. M. Sharrock, E. Münck, P.G. Debrunner, V. Marshall, J. Lipscomb, and I.C. Gunsalus, Biochemistry 12, 258 (1973).

    Article  CAS  Google Scholar 

  9. P.M. Champion, J.D. Lipscomb, E. Münck, P. Debrunner, and I.C. Gunsalus, Biochemistry 14, 4151 (1975).

    Article  CAS  Google Scholar 

  10. P.M. Champion, Thesis, University of Illinois (1975).

    Google Scholar 

  11. R. Zimmermann, H. Spiering, and G. Ritter, Chem. phys. 4, 133 (1974).

    Article  CAS  Google Scholar 

  12. G. Lang and W. Marshall, Proc. Phys. Soc., London 87, 3 (1966).

    Article  CAS  Google Scholar 

  13. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Chapter 19. 1, Clarendon Press, Oxford (1970).

    Google Scholar 

  14. R. Zimmermann, G. Ritter, H. Spiering and D.L. Nagy, Suppl. au J. de Physique (France), Fasc. 12, Collogue N°6, 439 (1974).

    Google Scholar 

  15. H. Spiering, R. Zimmermann, and G. Ritter, phys. stat. sol. b 62, 123 (1974).

    Article  CAS  Google Scholar 

  16. P. Zory, Phys. Rev. 140 A1401 (1965).

    Google Scholar 

  17. R. Zimmermann, Nucl. Inst. and Meth. 128 537 (1975).

    Google Scholar 

  18. R. Zimmermann, Chem. Phys. Lett. 34, 416 (1975).

    Article  CAS  Google Scholar 

  19. A. Trautwein, Y. Maeda, U. Gonser, F. Parak and H. Formanek, Proc. of the 5th Intern. Conf. on Mössbauer Spectroscopy, Bratislava (CSSR), Sept. 1973; U. Gonser, Y. Maeda, A. Trautwein, F. Parak and H. Formanek, Z. f. Naturforschung 29b 241 (1974).

    Google Scholar 

  20. Y. Maeda, T. Harami, A. Trautwein, U. Gonser, Z. f. Naturforschung B (in press).

    Google Scholar 

  21. E.F. Slade and R.H. Farrow, Biochim. Biophys. Acta 278 450 (1972).

    Google Scholar 

  22. B.H. Huynh, G.C. Papaefthymiou, C.S. ven, J.L. Groves and C.S. Wu, J. Chem. Phys. 61, 3750 (1974).

    Google Scholar 

  23. A. Trautwein, R. Zimmermann, F.E. Harris, Theor. Chim. Acta 37, 89 (1975).

    Article  CAS  Google Scholar 

  24. H. Eicher, D. Bade and F. Parak (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Münck, E., Zimmermann, R. (1976). Hemes, Iron Sulfur Centers, and Single Crystals: Some Aspects of Recent Biological Work. In: Gruverman, I.J., Seidel, C.W. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8073-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8073-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8075-7

  • Online ISBN: 978-1-4684-8073-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics