Mössbauer Spectroscopy of Supported Bimetallic Catalysts

  • R. L. Garten


In recent years there has been renewed interest in catalysis by alloys from both the fundamental and practical points of view. Much of this interest has been stimulated by the advent of bimetallic catalysts in catalytic reforming. Recent studies of Sinfelt and co-workers (1) have demonstrated that alloying can have a marked effect on catalytic specificity. For example, the specific activity of bulk CuNi alloys for carbon-hydrogen bond breaking (dehydrogenation) is nearly independent of composition up to ~80 atomic percent Cu whereas the specific activity for carbon-carbon bond breaking (hydrogenolysis) is decreased by about four orders of magnitude when ~30 atomic percent Cu is added to Ni. Similar results obtained by Sinfelt (2) for SiO2-supported CuRu and CuOs catalysts strongly point to the formation of bimetallic clusters in these well-dispersed metal catalysts. The term bimetallic cluster is preferred to alloy for well-dispersed particles where surface effects dominate since catalytic evidence indicates that bimetallic clusters may be formed even for cases where no corresponding bulk alloy is known (2).


Isomer Shift Quadrupole Splitting Bimetallic Catalyst Bulk Alloy Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Sinfelt, J. L. Carter and D. J. C. Yates, J. Catal., 24, 283 (1972).CrossRefGoogle Scholar
  2. 2.
    J. H. Sinfelt, J. Catal., 29, 308 (1973).CrossRefGoogle Scholar
  3. 3.
    R. L. Garten, J. Catal., in press.Google Scholar
  4. 4.
    For example see J. R. Anderson, “Structure of Metallic Catalysts”, Academic Press, New York, 1975.Google Scholar
  5. 5.
    P. C. Aben, J. Catal., 10, 224 (1968).CrossRefGoogle Scholar
  6. 6.
    G. R. Wilson and W. K. Hall, J. Catal., 24, 306 (1972).CrossRefGoogle Scholar
  7. 7.
    R. L. Garten and D. F. Ollis, J. Catal., 35, 232 (1974).CrossRefGoogle Scholar
  8. 8.
    a) M. C. Hobson, Jr. and H. M. Gager, J. Colloid and Interface Sci., 34, 357 (1970). (b) H. M. Cager, J. F. Lefelhoez and M. C. Hobson, Jr., Chem. Phys. Lett., 23 386 (1973). (c) T. Tachibana, T. Ohya, T. Yoshioka, J. Koezuka and H. Ikoma, Bull. Chem. Soc. Japan, 42, 2180 (1969).Google Scholar
  9. 9.
    S. M. Qaim. Proc. Phys. Soc., 90, 1065 (1967).CrossRefGoogle Scholar
  10. 10.
    R. L. Garten, unpublished results.Google Scholar
  11. 11.
    C. H. Bartholomew and M. Boudart, J. Catal., 29, 278 (1973).CrossRefGoogle Scholar
  12. 12.
    F. L. Williams and D. Nason, Surf. Sci., 45, 377 (1974).CrossRefGoogle Scholar
  13. 13.
    M. I. Dekhtyar, V. N. Kolesmk, V. I. Patoka, V. I. Silantev and I. Ya. Dekhtyar, Phys. Stat. Sol., 24, 699 (1974).CrossRefGoogle Scholar
  14. 14.
    J. M. Ziman, “Principals of the Theory of Solids”, 2nd Edition, Cambridge University Press, Cambridge, Mass., 1972.CrossRefGoogle Scholar
  15. 15.
    a) J. A. Cusumano and M. J. D. Low, J. Catal., 17, 98 (1970). (b) H. Mark and M. J. D. Low, J. Catal., 30, 40 (1973).CrossRefGoogle Scholar
  16. 16.
    P. Ratnasamy, A. J. Leonard, L. Rodrigue and J. J. Fripiat, J. Catal., 24, 374 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • R. L. Garten
    • 1
  1. 1.Corporate Research LaboratoriesExxon Research and Engineering CompanyLindenUSA

Personalised recommendations