Advertisement

Mössbauer Studies with the Rare-Gas Isotope 83Kr

  • Berend Kolk

Abstract

The isomer shift and other hyperfine-interaction parameters depend largely on the electron configuration of the Mössbauer atom in the host lattice, which in most cases is not sufficiently well known. One way to overcome this problem is to study isolated atoms trapped in rare-gas matrixes, where it is assumed that these isolated atoms have a free-atom electron configuration. Studies on rare-gas matrix isolated molecules of 125Te compounds are presented at this symposium by Montano and coworkers.

Keywords

Isomer Shift Quadrupole Splitting Mossbauer Spectrum Anharmonic Effect Contact Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Kolk, Phys. Rev. B 12, 1620 (1975)CrossRefGoogle Scholar
  2. 2.
    B. Kolk, Phys. Rev. B 12, 1+695 (1975)Google Scholar
  3. 3.
    B. Kolk, Phys. Lett. 35A, 83 (1971)CrossRefGoogle Scholar
  4. 4.
    B. Kolk, thesis, Rijks Universiteit Groningen, Netherlands (1974)Google Scholar
  5. 5.
    J.H. van der Waals and J.C. Platteeuw,Adv. in Chem. Phys. Vol. II, Interscience Publ., London, 1959, p. 1Google Scholar
  6. 6.
    G.L. Pollack, Rev. Mod. Phys. 36, 718 (1964)Google Scholar
  7. 7.
    G.K. Horton, Am. J. Phys. 36, 93 (1968)CrossRefGoogle Scholar
  8. 8.
    M. Pasternak and T. Sonnino, Phys. Rev. 164, 384 (1967)Google Scholar
  9. 9.
    S. Bukshpan, C. Goldstein and T. Sonnino, Phys. Lett. 27A, 372 (1968)CrossRefGoogle Scholar
  10. 10.
    Recently low-dose implantations of B3Rb in iron have been carried out by S. Bukshpan and H. de Waard, private communicationGoogle Scholar
  11. 11.
    R.S. Nelson, Proc. Roy. Soc. A311, 53 (1969)Google Scholar
  12. 12.
    H. de Waard, Physica Scripta 11, 157 (1975)CrossRefGoogle Scholar
  13. 13.
    H. Bernas, Physica Scripta 11, 167 (1975)Google Scholar
  14. 14.
    D.A. Shirley, Phys. Lett. 25A, 129 (1967)Google Scholar
  15. 15.
    The density at the Kr nucleus was calculated for various electron configurations with the Herman-Skillman atomic-structure program (Ref. 19). The calibration constant C = 0.521(mm/sec)ao3 in the isomer-shift relation 1Vabs(°)121 was derived from the KrF2 data (see Ref.s 1 and 28)Google Scholar
  16. 16.
    B. Kolk, F. Pleiter and W. Heeringa, Nucl. Phys. A194, 614 (1972)Google Scholar
  17. 17.
    I.M. Band, L.A. Sliv and M.B. Trzhaskovskaya, Nucl. Phys. A156, 170 (1970)CrossRefGoogle Scholar
  18. 18.
    F. Pleiter and H. de Waard, to be publishedGoogle Scholar
  19. 19.
    F. Herman and S. Skillman, Atomic Structure Calculations ( Prentice-Hall Inc., New Jersey, 1973 )Google Scholar
  20. 20.
    D.E.Palin and H.M.Powell, J.Chem.Soc., 208 (1947)Google Scholar
  21. 21.
    N.R. Grey, N.G. Parsonage and L.A.K. Staveley, Mol. Phys. 4, 153 (1961)Google Scholar
  22. 22.
    B.Barnett and Y.Hazony, J.Chem.Phys. 433,3462(1965)Google Scholar
  23. 23.
    G.A. Neece and J.C. Poirier, J. Chem. Phys. 43, 4282 (1965)Google Scholar
  24. 24.
    J.C. Burgiel, H. Meyer and P.L. Richards, J. Chem. Phys. 43, 4291 (1965)CrossRefGoogle Scholar
  25. 25.
    Y. Hazony and R.L. Ruby, J. Chem. Phys. 49, 1478 (1968)Google Scholar
  26. 26.
    M.C.D. Ure and P.A. Flinn, Mössbauer Effect Methodology, Vol.7, (New Engl. Nucl. Corp., 1971 ) p. 245Google Scholar
  27. 27.
    V.M. Krasnoperov, A.N. Murin, N.K. Cherezov and I.A. Yutlandov, Sov. Phys. Doklady 14, 458 (1969)Google Scholar
  28. 28.
    S.L. Ruby and H. Selig, Phys. Rev. 147, 348 (1966) and Erratum, ibid. B 12 1991 (1975)Google Scholar
  29. 29.
    B. Kolk, to be publishedGoogle Scholar
  30. 30.
    F.D. Feiock and W.R. Johnson, Phys. Rev. 187, 39 (1969)CrossRefGoogle Scholar
  31. 31.
    Mössbauer Data Index 1973 (IFI/Plenum, NY-London)Google Scholar
  32. 32.
    Y. Hazony and R.H. Herber, J. Inorg. Nucl. Chem. 33, 961 (1971)CrossRefGoogle Scholar
  33. 33.
    K.G. Gilbert and C.E. Violet, Phys. Lett. 28A, 285 (1968) and K.G. Gilbert, thesis, Un. of California, 1968, UCRL- 50474Google Scholar
  34. 34.
    T.H.K. Barron, Disc. Faraday Soc. 40, 69 (1965)CrossRefGoogle Scholar
  35. 35.
    T.H.K. Barron, in Lattice Dynamics ( Pergamon Press Inc., NY, 1965 ) p. 247Google Scholar
  36. 36.
    L.S. Salter, Adv. in Phys. 14, 1 (1965)Google Scholar
  37. 37.
    M.P. Tosi and F.G. Fumi, J. Phys. Chem. Solids 23, 395 (1962)CrossRefGoogle Scholar
  38. 38.
    A.A. Maradudin and P.F. Flinn, Phys. Rev. 129, 2529 (1963)CrossRefGoogle Scholar
  39. 39.
    K.N. Pathak and B. Deo, Physica 35, 167 (1967)CrossRefGoogle Scholar
  40. 40.
    R.H. Nussbaum, B.G. Howard, W.L. Nees and C.F. Steen, Phys. Rev. 173, 653 (1968)CrossRefGoogle Scholar
  41. 41.
    J.L. Feldman and G.K. Horton, Proc. Phys. Soc. 92, 227 (1967)Google Scholar
  42. 42.
    J. Skalyo Jr., Y. Endoh and G. Shirane, Phys. Rev. B 9, 1797 (1974)CrossRefGoogle Scholar
  43. 43.
    T.H.K. Barron, A.J. Leadbetter and J.A. Morrison, Proc. Roy. Soc. 279, 62 (1964)CrossRefGoogle Scholar
  44. 44.
    D.L. Losee and R.O. Simmons, Phys. Rev. 172, 944 (1968)CrossRefGoogle Scholar
  45. 45.
    J.B. Brown Jr., in Mössbauer Effect Methodology Vol. 9 ( New Engl. Nucl. Corp., 1974 ) p. 23Google Scholar
  46. 46.
    W. Triftshäuser and P.P. Craig, Phys. Rev. 162, 274 (1967)CrossRefGoogle Scholar
  47. 47.
    W. Triftshäuser and D. Schroeer, Phys. Rev. 187, 491 (1969)CrossRefGoogle Scholar
  48. 48.
    S.D. Druger and R.S. Knox, J. Chem. Phys. 50, 3143 (1969)CrossRefGoogle Scholar
  49. 49.
    R.M. Cotterill and M. Doyama, Phys. Lett. 25A, 35 (1967)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Berend Kolk
    • 1
  1. 1.Dept. of Physics Busch CampusRutgers UniversityNew BrunswickUSA

Personalised recommendations