Applications of Parallel-Plate Avalance Counters in Mössbauer Spectroscopy

  • Gerd Weyer


Transmission techniques are the dominating detection techniques in Mössbauer spectroscopy. As illustrated in Fig.1 the usual set-up consists of a (moving) source emitting Mössbauer γ-radiation which is partially absorbed in a resonance absorber; the transmitted radiation is detected in a suitable γ-detector as a function of a relative velocity between source and absorber. A typical transmission-spectrum shows a resonance absorption effect of a few percent. In general this percentage cannot be increased due to Debye-Waller factors f < 1 for source and absorber and due to the necessity of thin absorbers to avoid undesired line broadening. Moreover, the effect may be decreased by additionally detected background radiation. The alternative method to measure resonantly scattered γ-radiation (γ′) or X-rays or conversion electrons emitted after resonance absorption has been applied for special problems only. Here, the background of non-resonantly scattered radiation can be kept low so that large (>1) effect-to-background ratios are obtainable for many cases. This advantage, however, is restricted by a loss in intensity due to a comparably small solid angle for the detection of the scattered radiation in conventional experimental arrangements.


Conversion Electron Iron Foil Absorber Thickness Resonance Counter Small Solid Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Debrunner, Mössbauer Effect Methodology (ed.I.J. Gruvermann) 1, 97 (1965)Google Scholar
  2. 2.
    K.P. Mitrofanov and V.S. Shpinel JETP 13, 686 (1961)Google Scholar
  3. 3.
    Zw. Bonchev, A. Jordanov and A. Minkova, Nucl. Instr. Meth. 70, 36 (1969)CrossRefGoogle Scholar
  4. 4.
    U. Bäverstam, C. Bohm, T. Ekdahl, D. Liljequist and B. Ringström, Mössbauer Effect Methodology (ed.I.J. Gruver-mann and C.W. Seidel and D.K. Dieterly) 9, 259 (1974)Google Scholar
  5. 5.
    K.P. Mitrofanov, N.V. Illarionova, and V.S. Shpinel Instr. Exp. Tech. 3, 415 (1963)Google Scholar
  6. 6.
    C.M. Yagnik, R.A. Mazak, and R.L. Collins Nucl. Instr. Meth. 114, 1 (1974)CrossRefGoogle Scholar
  7. 7.
    J.J. Spijkerman,Mössbauer Effect Methodology (ed. I.J. Gruvermann) 7, 85 (1971)Google Scholar
  8. 8.
    J. Christiansen, Z. angew. Phys. 4, 326 (1952)Google Scholar
  9. 9.
    J.E. Draper, Nucl. Instr. Meth. 30, 148 (1964)Google Scholar
  10. 10.
    A. Krusche, D. Bloess and F. Münnich, Nucl. Instr. Meth. 51, 197 (1967)CrossRefGoogle Scholar
  11. 11.
    G.T. Trammel, J.P. Hannon, Phys. Rev. 180, 337 (1969)CrossRefGoogle Scholar
  12. 12.
    Yu. M. Kagan, A.M. Afanasev, V.K. Voitovetskii JETP Letters 9, 91 (1969)Google Scholar
  13. 13.
    P. Steiner and G. Weyer, Z. Phys. 248, 362 (1971)CrossRefGoogle Scholar
  14. 14.
    A.M. Afanasev and Yu. Kagan, Phys. Lett. 31A, 38 (1970)CrossRefGoogle Scholar
  15. 15.
    K.P. Mitrofanov, M.V. Plotnikova, N.I. Rokhlov and V.S. Shpinel, JETP Lett. 12, 60 (1970)Google Scholar
  16. 16.
    P. Steiner and G. Weyer, Phys. Lett. 36A, 201 (1971)CrossRefGoogle Scholar
  17. 17.
    G. Weyer, J.U. Andersen, B.I. Deutch, J.A. Golovchenko and A. Nylandsted-Larsen, Rad. Eff. 24, 117 (1975)CrossRefGoogle Scholar
  18. 18.
    P. Steiner and G. Weyer, unpublishedGoogle Scholar
  19. 19.
    J. Christiansen, P. Hindennach, U. Morfeld, E. Recknagel, D. Riegel and G. Weyer, Nucl. Phys. A99, 345 (1967)CrossRefGoogle Scholar
  20. 20.
    H. Drost, H.v. Lojewski, K. Palow, R. Wallenstein and G. Weyer, Proc. of the 5th Int. Conf. on Mössb. Spectr., Bratislava 1973, Ed. U. Hucl and T. Zemcik, page 713 (1975)Google Scholar
  21. 21.
    H. Drost,K. Palow and G. Weyer, Proc. of the Int. Conf. on the Appl. of the Mössb. Eff., Bendor 1974, Journ. de Phys. (Paris) 12, C 6–679 (1974)Google Scholar
  22. 22.
    P.J. West, E. Matthias, D. Salomon, W. Wallner and G. Weyer, Proc. of the Int. Conf. on Mössb. Spectr.Cracow 1975, Ed. A.Z. Hrynkiewicz and J.A. Sawicki, p. 457 (1975)Google Scholar
  23. 23.
    D. Salomon, P.J. West, G. Weyer and E. Matthias Mössbauer conversion electron studies on tantalum metal surfaces, to be publishedGoogle Scholar
  24. 24.
    S.L. Ruby, Proc. of the Int. Conf. on the Appl. of the Mössb. Eff., Bendor 1974, Journ. de Phys. (Paris) 12, C 6–209 (1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Gerd Weyer
    • 1
  1. 1.Institut für Atom- und FestkörperphysikFreien Universität BerlinGermany

Personalised recommendations