Advertisement

Mössbauer Spectroscopy in Heterogeneous Catalysis

  • W. N. Delgass

Abstract

A typical solid catalyst consists of 1–10 nm particles of the active components dispersed on a high-surface-area (~300 m2/g), relatively inert support. When one of the elements in the active component phase has a Mössbauer effect, a variety of catalytically important, and otherwise inaccessible, chemical properties of the catalyst can be measured. The detailed chemical information contained in the recoil free fraction, isomer shift, quadrupole splitting and magnetic dipole splitting derived from the Mössbauer spectrum can elucidate structure, bonding, composition and particle size of the active component phase. When particle size is small, a high fraction of the Mössbauer atoms are surface atoms, and their interactions with adsorbed gases make a strong contribution to the spectrum. The technique is illustrated by discussion of studies of supported iron, iron-exchanged zeolites, the ammonia synthesis catalyst and oxidation/ reduction catalysts. The emphasis is on the nature of catalytic problems susceptible to investigation by Mössbauer spectroscopy.

Keywords

MOSSBAUER Spectroscopy Isomer Shift Quadrupole Splitting Electric Field Gradient Heterogeneous Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Flinn, S. L. Ruby, and W. L. Kehl, Science 143, 1434 (1964).Google Scholar
  2. 2.
    H. M. Gager and M. C. Hobson, Jr., Catal. Rev-Sci. Eng. 11, 117 (1975).Google Scholar
  3. 3.
    J. A. Dumesic and H. Topsoe, Adv. in Catal. to be published.Google Scholar
  4. 4.
    M. Poltorok and V. S. Baronin, Intern. Chem. Engin. 7, 452 (1976).Google Scholar
  5. 5.
    J. Müller, Rev. Pure and Appl. Chem. 19, 151 (1969).Google Scholar
  6. 6.
    C. H. Bartholomew and M. Boudart, J. Catal. 29, 278 (1973).CrossRefGoogle Scholar
  7. 7.
    R. L. Garten and D. F. 011is, J. Catal. 35, 232 (1974).CrossRefGoogle Scholar
  8. 8.
    R. L. Garten and M. A. Vannice, J. Molecular Catal. in press.Google Scholar
  9. 9.
    R. L. Garten, J. Catal. in press.Google Scholar
  10. 10.
    J. M. Blakely and J. C. Shelton, in Surface Physics of Materials Vol. I, J. M. Blakely,Ed., Academic Press, New York, 1975, p. 189.CrossRefGoogle Scholar
  11. 11.
    R. Bauman, G. J. M. Lippits and W. M. H. Sachtler, J. Catal 25, 350 (1972).CrossRefGoogle Scholar
  12. 12.
    F. L. Williams and M. Boudart, J. Catal. 30, 438 (1973).CrossRefGoogle Scholar
  13. 13.
    L. D. Schmidt, Cat. Rev.-Sci. Eng. 9, 115 (1974).Google Scholar
  14. 14.
    E. K. Rideal, Concepts in Catalysis Academic Press, New York, 1968, p. 41.Google Scholar
  15. 15.
    R. Gomer, Solid State Physics 30, 93 (1975).CrossRefGoogle Scholar
  16. 16.
    J. W. Gadzuk, in Surface Physics of Materials Vol. II, J. M. Blakely, Ed., Academic Press, New York, 1975, p. 339.CrossRefGoogle Scholar
  17. 17.
    R. Van Hardeveld and F. Hartog, Surf. Sci. 15, 189 (1969).Google Scholar
  18. 18.
    M Boudart, Adv. in Catal. 20, 153 (1969).Google Scholar
  19. 19.
    R. C. Baetzold and R. E. Mack, J. Chem. Phys, 62, 1513 (1975).Google Scholar
  20. 20.
    K. Johnson and R. P. Messmer, J. Vac. Sci. Technol. 11, 236 (1974). J.G. Fripiat, K.T. Chow, M. Boudart, J.G. Diamond, K.H. Johnson, J. Molecular Catal. 1, 59 (1975).Google Scholar
  21. 21.
    G. A. Somorjai, Catal. Rev. 7, 87 (1972).Google Scholar
  22. 22.
    A. N. Karasev, Yu. A. Kolbanovskìi, L. S. Polak, and E. Sh. Shlikhter, Kirret. i Katal. 8, 232 (1967).Google Scholar
  23. 23.
    C. F. Cook, P. R. Gray and H. M. Barton, Jr., Proceedings of The Second Symposium on Low Energy X- and Gamma Sources and Applications ORNL-11C-10, p. 130 (1967).Google Scholar
  24. 24.
    I. P. Suzdalev, A. M. Afanas’ev, A. S. Plachinda, V. I. Gol’danskii, and E. F. Makarov, Soviet Phys. JETP 28, 923 (1969).Google Scholar
  25. 25.
    I. W. Burton, R. P. Godwin, and H. Frauenfelder, Applications of the Mössbauer Effect in Chemistry and Solid State Physics (Vienna 1966) IAEA Tech. Rep. Ser. 50, p. 73. and I. W. Burton and R. P. Godwin, Phys. Rev. 158, 218 (1967).Google Scholar
  26. 26.
    G. W. Simmons, E. Kellerman, and H. Leidheiser, Jr., Corrosion 29, 227 (1973).CrossRefGoogle Scholar
  27. 27.
    W. N. Delgass, L.-Y. Chen and G. Vogel, Rev. Sci. Instrum. 47, 136 (1976).Google Scholar
  28. 28.
    C. A. Clausen, III, and M. L. Good, J. Catal. 38, 92 (1975).Google Scholar
  29. 29.
    P. N. Ross, Jr., and W. N. Delgass, in Catalysis, Vol.1 J. W. Hightower, Ed., North Holland Publishing Co., Amsterdam, (1973) p. 597.Google Scholar
  30. 30.
    H. M. Gager, Ph.D. Thesis, Virginia Commonwealth University (1972).Google Scholar
  31. 31.
    L. V. Skalkina, I. P. Suzdalev, I. K. Kolchin and L. Ya. Margolis; Kinet. i Katal. 10, 456 (1969).Google Scholar
  32. 32.
    M. C. Hobson, Jr., Nature, 214, 79 (1967).Google Scholar
  33. 33.
    I. P. Suzdalev and E. F. Makarov, Proceedings of the Conference on the Application of the Mössbauer Effect (Tihany, 1969) Akademiai Kiado, Budapest, 1971, p. 201.Google Scholar
  34. 34.
    I. P. Suzdalev, A. S. Plachinda, and E. F. Makarov, Soviet Phys. JETP 26, 897 (1968).Google Scholar
  35. 35.
    H. Tops0e and M. Boudart, J. Catal. 31, 346 (1973).CrossRefGoogle Scholar
  36. 36.
    E. A. Samuel and W. N. Delgass, J. Chem. Phys. 62, 1590 (1975).Google Scholar
  37. 37.
    P. N. Ross, Jr. and W. N. Delgass, J. Catal. 33, 219 (1974).Google Scholar
  38. 38.
    G. A. Somorjai, Principles of Surface Chemistry Prentice Hall, Englewood Cliffs, N.J., 1972, p. 99.Google Scholar
  39. 39.
    K. S. Singwi and S. A. Sjölander, Phys. Rev., 120 1093 (1960).Google Scholar
  40. 40.
    V. I. Gol’danskii and I. P. Suzdalev, Russian Chem. Rev. 39, 609 (1970).Google Scholar
  41. 41.
    W. Kundig, H. Bömmel, G. Constabaris, and R. H. Lindquist, Phys. Rev. 142, 327 (1966).Google Scholar
  42. 42.
    I. P. Suzdalev, Proceedings of the Conference on the Application of the Mössbauer Effect (Tihany, 1969) Akademiai Kiado, Budapest, 1971, p. 193.Google Scholar
  43. 43.
    H. Hobert and D. Arnold, ibid p. 325.Google Scholar
  44. 44.
    A. M. Rubashov, P. B. Fabrichnyi, B. V. Shakhov and A. M. Babeshkin, Zh. Fiz. Khim. 46, 1327 (1972).Google Scholar
  45. 45.
    Y.-Y. Huang and J. R. Anderson, J. Catal. 40, 143 (1975).CrossRefGoogle Scholar
  46. 46.
    F. A. Fortunato and W. N. Delgass, unpublished results.Google Scholar
  47. 47.
    J. A. Dumesic, H. Topshe, S. Khammouma, and M. Boudart, J. Catal. 37, 503 (1975).CrossRefGoogle Scholar
  48. 48.
    R. L. Garten, W. N. Delgass, and M. Boudart, J. Catal. 18, 90 (1970).Google Scholar
  49. 49.
    M. Boudart, R. L. Garten and W. N. Delgass, Memoires de la Soc. Roy. Sc. Liège, 6e Serie, I (4), 135 (1971).Google Scholar
  50. 50.
    Y. Y. Huang, J. E. Benson, and M. Boudart, Ind. Eng. Chem. Fundam. 8, 346 (1969).Google Scholar
  51. 51.
    R. L. Garten, J7 Gallard-Nechtschein and M. Boudart, Ind. Eng. Chem. Fundam. 12, 299 (1973).Google Scholar
  52. 52.
    E. A. Samuel, Ph.D. Thesis, Yale University (1973).Google Scholar
  53. 53.
    H. Topshe, J. A. Dumesic and M. Boudart, J. Catal. 28, 477 (1973).CrossRefGoogle Scholar
  54. 54.
    P. H. Emmett and S. J. Brunauer, J. Amer. Chem. Soc. 59, 1553 (1937) and 62, 1732 (1940).Google Scholar
  55. 55.
    R. Hosemann, A. Preisinger, and W. Vogel, Ber. der Bunseng 70, 796 (1966).Google Scholar
  56. 56.
    R. Hosemann, K. Lemur, A. Schonfeld, and W. Wilke, Kolloid-Z. Z. Polym. 216–217, 103 (1967).Google Scholar
  57. 57.
    R. Hosemann, Chem. Inq. Tech. 42, 1252 and 1325 (1970).Google Scholar
  58. 58.
    A. A. Firsova, N. N. Khovanskaya, A. D. Tsyganov, I. P. Suzdalev, and L. Ya. Margolis, Kinet. i Katal. 12, 792 (1971).Google Scholar
  59. 59.
    L. Ya. Margolis, J. Catal. 21, 93 (1971).CrossRefGoogle Scholar
  60. 60.
    I. P. Suzdalev, A. A. Firsova, A. U. Aleksandrov, L. Ya. Margolis, and D. A. Baltrunas, Dok. Akad. Nauk. SSSR. 204, 408 (1972).Google Scholar
  61. 61.
    Yu. V. Maksimov, I. P. Suzdalev, V. I. Gol’danskii, 0. V. Krylov, L. Ya. Margolis, and A. E. Nechitailo, Chem. Phys. Letters 34, 172 (1975).Google Scholar
  62. 62.
    G. K. Boreskov, Kinet. i Katal. 11, 374 (1970).Google Scholar
  63. 63.
    D. S. Shihabi and W. N. Delgass, unpublished results.Google Scholar
  64. 64.
    L.-Y. Chen, Ph.D. Thesis, Purdue University (1975).Google Scholar
  65. 65.
    K. Tamaru, Adv. in Catal., 15, 65 (1964).Google Scholar
  66. 66.
    R. J. Kokes, Cat. Rev. 6, 1 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • W. N. Delgass
    • 1
  1. 1.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations