Automated System for Microbial Screening/Breeding

  • Toru Okuda
  • Hiroyoshi Tabuchi


New areas in biotechnology have progressed remarkably and are expected to produce new industries. Its methods have already been applied to a wide range of fields, such as agriculture, the chemical, food, energy and pharmaceutical industries. The key factors in biotechnology are gene manipulation, cell fusion, large-scale cell culture, and technology for bioreactors; pertinent industrial processes will require highly developed and precise equipment. The actual market scale of biotechnology has enlarged to more than 100 billion yen ($0.7 billion) in 1989 according to Nikkei Biotech (1989). Although an investigation by BIDEC (Bioindustry Development Center in the Japanese Association of Fermentation and Industry) reports that the industrial scale of biotechnology will grow up to 15,000 billion yen ($100 billion) per year by the twenty-first Century, most of the technology is now in the research and development stage. Rapid development is expected.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borel, J. F., C. Feurer, C. Magnee, and H. Stahelin. 1977. Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 32:1017–1025.PubMedPubMedCentralGoogle Scholar
  2. Dreyfuss, M., E. Harii, H. Hoffman, H. Kobel, W. Pache, and H. Tscherter. 1976. Cyclosporin A and C. Eur. J. Appl. Microbiol. 3:125–133.CrossRefGoogle Scholar
  3. Endo, A. 1979. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiotics 32:852–854.CrossRefGoogle Scholar
  4. Endo, A., M. Kuroda, and Y. Tsujita. 1976. ML-236A, ML-236B and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J. Antibiotics 29:1346–1348.CrossRefGoogle Scholar
  5. Fukujoji, S., M. Sugihara, H. Imai, T. Soejima, and Y. Odawara. 1987. Trends of biotechnology equipment. Hitachi Hyoron 69:289–294.Google Scholar
  6. Freidinger, R. M. 1989. Cholecystokinin and gastrin antagonists. Medicinal Res. Rev. 9:271–290.CrossRefGoogle Scholar
  7. Goetz, M. A., M. Lopez, R. L. Monaghan, R. S. L. Chang, V. J. Lotti, and T. B. Chen. 1985. Asperlicin, a novel nonpeptidal cholecystokinin antagonist from Aspergillus alliaceus. J. Antibiotics 38:1633–1637.CrossRefGoogle Scholar
  8. Kino, T., H. Hatanaka, M. Hashimoto, M. Nishiyama, T. Goto, M. Okuhara, M. Kohsaka, H. Aoki, and H. Imanaka. 1987. FK-506, a novel immunosuppressant isolated from a streptomyces. J. Antibiotics 40:1249–1255.CrossRefGoogle Scholar
  9. Nikkei Biotech, ed. 1989. Nikkei Biotechnology Yearbook 89/90. Nikkei Biotech Press, Tokyo.Google Scholar
  10. Nukumi, M., F. Iwatani, M. Ohkuma, and Y. Odawara. 1987. Automatic colony transfer and analyzing system. Hitachi Hyoron 69:313–319.Google Scholar
  11. Ohkawa, T., M. Nukumi, S. Nishimura, T. Okuda, T. Furumai, and T. Honda. 1989. Instrument for the Liquid Culture. Japanese Patent Kokai H1–225476 Sept. 8, 1989.Google Scholar
  12. Umezawa, H., T. Aoyagi, H. Suda, M. Hamada, and T. Takeuchi. 1976. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiotics 29:97–99.CrossRefGoogle Scholar
  13. Umezawa, H., T. Aoyagi, T. Hazato, K. Uotani, F. Kojima, M. Hamada, and T. Takeuchi. 1978. Esterastin, an inhibitor of esterase, produced by actinomycetes. J. Antibiotics 31:639–641.CrossRefGoogle Scholar
  14. Umezawa, H., T. Aoyagi, K. Uotani, M. Hamada, T. Takeuchi, and S. Takahashi. 1980. Ebelactone, an inhibitor of esterase, produced by actinomycetes. J. Antibiotics 33:1594–1596.CrossRefGoogle Scholar
  15. Umezawa, H., T. Aoyagi, S. Ohuchi, A. Okuyama, H. Suda, T. Takita, M. Hamada, and T. Takeuchi. 1983. Arphamenine A and B, new inhibitors of amino-peptidase B, produced by bacteria. J. Antibiotics 36:1572–1575.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • Toru Okuda
  • Hiroyoshi Tabuchi

There are no affiliations available

Personalised recommendations