Natural Enzyme and Biocontrol Methods for Improving Fruits and Fruit Quality

  • Elizabeth A. Baldwin
  • Robert A. Baker


The fresh fruit industry has many postharvest problems to overcome. Often fruits, such as tomato or banana, are harvested immature in order to survive shipping and handling conditions. During transit and upon arrival at retail markets, some fruits are either stored at low temperatures or in controlled atmospheres to delay ripening in order to extend shelf life. Other fruits are treated with ethylene gas to accelerate ripening prior to display in supermarkets. Such practices are costly and can result in a poor-quality product.


Ethylene Production Natural Enzyme Galacturonic Acid Pectin Lyase Citrus Pectin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, R. A. 1987. Preparation and storage stability of enzyme peeled grapefruit. Paper read at the 1987 Subtropical Technology Conference, Winter Haven, FL.Google Scholar
  2. Baker, R. A., and J. H. Bruemmer. 1989. Quality and stability of enzymically peeled and sectioned citrus fruit. In Quality Factors of Fruits and Vegetables—Chemistry and Technology, ACS Symposium Series 405, ed. J. J. Jen, pp. 140–148. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  3. Baker, R. A., J. A. Foerster, and M. E. Parish. 1988. Flavor, texture, and microbial stability of enzyme peeled citrus. Paper read at the 1988 Subtropical Technology Conference, Winter Haven, FL.Google Scholar
  4. Baldwin, E. A., and R. H. Biggs. 1988. Cell-wall lysing enzymes and products of cell-wall digestion elicit ethylene in citrus. Physiol. Plant. 73:58–64.CrossRefGoogle Scholar
  5. Baldwin, E. A., and R. Pressey. 1988a. Tomato polygalacturonase elicits ethylene production in tomato fruit. J. Am. Soc. Hort. Sci. 113(1):92–95.Google Scholar
  6. Baldwin, E. A., and R. Pressey. 1989b. Treatment of tomatoes with an exo-enzyme increases ethylene and accelerates ripening. Proc. Fla. State Hort. Soc. 101:215–217.Google Scholar
  7. Baldwin, E. A., and R. Pressey. 1989. Pectic enzymes in Pectolyase: Separation, characterization, and induction of ethylene in fruits. Plant Physiol. 90:191–196.CrossRefGoogle Scholar
  8. Baldwin, E. A., and R. Pressey. 1990. Exopolygalacturonase elicits ethylene production in tomato. HortScience 25(7):779–780.Google Scholar
  9. Baldwin, E. A., M. O. Nisperos-Carriedo, and M. G. Moshonas. 1991. Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. J. Am. Soc. Hort. Sci. 116:265–269.Google Scholar
  10. Bancroft, M. N., P. D. Gardner, J. W. Eckert, and J. L. Baritelle. 1984. Comparison of decay control strategies in California lemon packinghouses. Plant Dis. 68:24–28.Google Scholar
  11. Ben-Shalom, N., and R. Pinto. 1986. Pectolytic enzyme studies for peeling of grapefruit segment membrane. J. Food Sci. 51:421–423.CrossRefGoogle Scholar
  12. Biale, J. B., and R. E. Young. 1981. Respiration and ripening-fruits retrospect and prospects. In Recent Advances in the Biochemistry of Fruit and Vegetables, ed. J. Friend and M. J. C. Rhodes, pp. 1–39. London: Academic Pres.Google Scholar
  13. Brecht, J. H., and D. J. Huber. 1988. Products released from enzymically active cell wall stimulate ethylene production and ripening in preclimacteric tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol. 88:1037–1041.CrossRefGoogle Scholar
  14. Bruemmer, J. H. 1981. Method of Preparing Citrus Fruit Sections with Fresh Fruit Flavor and Appearance. U.S. Patent No. 4,284,651.Google Scholar
  15. Bruemmer, J. H., A. W. Griffin, and O. Onayemi. 1978. Sectionizing grapefruit by enzyme digestion. Proc. Fla. State Hort. Soc. 91:112–114.Google Scholar
  16. Bush, P. 1990. When less is more. Prepared Foods 159(9):138–140.Google Scholar
  17. DeLaat, A. M., and L. C. VanLoon. 1982. Regulation of ethylene biosynthesis in virus-infected tobacco leaves. Plant Physiol. 69:240–245.CrossRefGoogle Scholar
  18. Droby, S., E. Chalutz, C. L. Wilson, and M. Wisniewski. 1989. Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicilliumdigitatum on grapefruit. Can. J. Microbiol. 35(8):794–800.CrossRefGoogle Scholar
  19. Dubos, B. 1987. Fungal antagonism in aerial agrobiocenoses. In Innovative Approaches to Plant Disease Control, ed. I. Chet, pp. 107–135. New York: Wiley.Google Scholar
  20. Evenson, K. B., M. G. Bausher, and R. H. Biggs. 1981. Wound-induced ethylene production in peel expiants of ‘Valencia’ orange fruit. HortScience 16:43.Google Scholar
  21. Grierson, D. 1985. Gene expression in ripening tomato fruit. CRC Critical Rev.Plant Sci. 3(2):113–132.CrossRefGoogle Scholar
  22. Grierson, D., and G. A. Tucker. 1983. Timing of ethylene and polygalacturonase synthesis in relation to the control of tomato fruit ripening. Planta 157:174.CrossRefGoogle Scholar
  23. Guadagni, D. G., V. P. Maier, and J. H. Turnbaugh. 1974. Some factors affecting sensory thresholds and relative bitterness of limonin and naringin. J. Sci. FoodAgric. 25:1199–1205.CrossRefGoogle Scholar
  24. Ishii, S. 1976. Enzymatic maceration of plant tissues by endo-pectin lyase and endopolygalacturonase from Aspergillus japonicus. Phytopathology 66:281–289.CrossRefGoogle Scholar
  25. Ishii, S., and T. Yokotsuka. 1975. Purification and properties of pectin lyase from Aspergillus japonicus. Agric. Biol. Chem. 39:313–321.CrossRefGoogle Scholar
  26. Janisiewicz, W. J. 1987. Postharvest biological control of blue mold on apples. Phytopathology 77:481–485.CrossRefGoogle Scholar
  27. Janisiewicz, W. J., and J. Roitman. 1988. Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700.CrossRefGoogle Scholar
  28. Javeri, H., R. Toledo, and L. Wicker. 1990. Effect of vacuum infusion of citrus pectinmethylesterase and calcium on firmness of peaches. J. Food Sci. 56:739–742.CrossRefGoogle Scholar
  29. Jeffery, D., C. Smith, P. Goodenough, I. Prosser, and D. Grierson, 1984. Ethylene-independent and ethylene-dependent biochemical changes in ripening tomatoes. Plant Physiol. 74:32–38.CrossRefGoogle Scholar
  30. Jeffries, P., and M. J. Jeger. 1990. The biological control of postharvest diseases of fruit. Postharvest News and Info. 1:365–368.Google Scholar
  31. Ketring, D. L., and H. A. Melouk. 1982. Ethylene production and leaflet abscission of three peanut genotypes infected with Cercospora arachidicola Hori. Plant Physiol. 69:789–792.CrossRefGoogle Scholar
  32. Khudairi, A. K. 1972. The ripening of tomatoes. Amer. Scientist 60:696–707.Google Scholar
  33. Kim, J., K. C. Gross, and T. Solomos. 1987. Characterization of the stimulation of ethylene production by galactose in tomato (Lycopersicon esculent urn Mill.) fruit. Plant Physiol. 85:804–807.CrossRefGoogle Scholar
  34. Koomen, I., J. C. Dodd, M. J. Jeger, and P. Jeffries. 1990. Postharvest biocontrol of anthracnose disease of mangoes. J. Sci. Food Agric. 50:137–138.Google Scholar
  35. McFeeters, R. F. 1989. Function of metal cations in regulating the texture of acidified vegetables. In Quality Factors of Fruits and VegetablesChemistry andTechnology, ACS Symposium Series 405, ed. J. J. Jen, pp. 125–139. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  36. McLaughlin, R. J., M. E. Wisniewski, C. L. Wilson, and E. Chalutz. 1990. Effect of inoculum concentration and salt solutions on biological control of postharvest diseases of apple with Candida sp. Phytopathology 80:456–461.CrossRefGoogle Scholar
  37. McNeil, N., A. G. Darvill, S. C. Fry, and P. Albersheim. 1984. Structure and function of the primary cell walls in plants. Ann. Rev. Biochem. 53:625–663.CrossRefGoogle Scholar
  38. Mizrahi, Y., H. Dostal, and J. Cherry. 1975. Ethylene-induced ripening in attached ‘rin’ fruits, a non-ripening mutant of tomato. HortScience 10:414–415.Google Scholar
  39. Pressey R. 1986. Polygalacturonases in higher plants. In Chemistry and Function of Pectins, ACS Symposium Series 310, ed. J. Jen, pp. 157–174. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  40. Pressey, R. 1987. Exopolygalacturonase in tomato fruit. Phytochem. 26:1867–1870.CrossRefGoogle Scholar
  41. Pressey, R., and J. K. Avants 1977. Occurrence and properties of polygalacturonase in Avena and other plants. Plant Physiol. 60:548–553.CrossRefGoogle Scholar
  42. Pusey, P. L., C. L. Wilson, M. W. Hotchkiss, and J. D. Franklin. 1986. Compatibility of Bacillus subtilis for postharvest control of peach brown rot with commercial fruit waxes, dicloran and cold-storage conditions. Plant Dis. 70:587–590.CrossRefGoogle Scholar
  43. Pusey, P. L., M. W. Hotchkiss, H. T. Dulmage, R. A. Baumgardner, E. I. Zehr, et al. 1988. Pilot test for commercial production and application of Bacillus subtilis (B-3) for postharvest control of peach brown rot. Plant Dis. 72:622–626.CrossRefGoogle Scholar
  44. Rexova-Benkova, L., and O. Markovic. 1976. Pectic enzymes. Adv. Carbohydr. Chem. Biochem. 33:323–385.CrossRefGoogle Scholar
  45. Roberts, R. G. 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology 80:526–530.CrossRefGoogle Scholar
  46. Roe, B., and J. H. Bruemmer. 1976. New grapefruit product: Debitterizing albedo in situ. Proc. Fla. State Hort. Soc. 89:191–194.Google Scholar
  47. Roe, B., and J. H. Bruemmer. 1977. Treatment requirements for debittering and fortifying grapefruit and stable storage of the product. Proc. Fla. State Hort. Soc. 90:180–182.Google Scholar
  48. Sinclair, W. B. 1972. The Grapefruit, Its Composition, Physiology, and Products. University of California, Division of Agricultural Science. University of California Press, Riverside, CA, p. 137.Google Scholar
  49. Stadelbacher, G. J., and K. Prasad. 1974. Postharvest decay control of apple by acetaldehyde vapor. J. Am. Soc. Hort. Sci. 99:364–368.Google Scholar
  50. Thomas, D. W., C. V. Smythe, and M. D. Laffee. 1958. Enzymatic hydrolysis of naringin, the bitter principle of grapefruit. Food Res. 23:591–598.Google Scholar
  51. Tong, C., J. Labavitch, and S. F. Yang. 1986. The induction of ethylene production from pear cell culture by cell wall fragments. Plant Physiol. 81:929–930.CrossRefGoogle Scholar
  52. Tronsmo, A. 1986. Use of Trichoderma spp. in biological control of necrotrophic pathogens. In Microbiology of the Phyllosphere. ed. N. J. Fokkema and J. van den Heuvel, pp. 348–362. Cambridge, UK: Cambridge University Press.Google Scholar
  53. Wills, R. H., T. H. Lee, D. Graham, W. B. McGlasson, and E. G. Hall. 1981. Postharvest: An Introduction to the Physiology and Handling of Fruit and Vegetables. Westport, CT: AVI.Google Scholar
  54. Wilson, C. L. 1989. Managing the microflora of harvested fruits and vegetables to enhance resistance. Phytopathology 79:1387–1390.Google Scholar
  55. Wilson, C. L., and E. Chalutz. 1989. Postharvest biological control of Penicillium rots of citrus with antagonistic yeasts and bacteria. Scientia Hort. 40:105–112.CrossRefGoogle Scholar
  56. Wilson, C. L., and P. L. Pusey. 1985. Potential for biological control of postharvest plant diseases. Plant Dis. 69:375–378.CrossRefGoogle Scholar
  57. Wilson, C. L., and M. E. Wisniewski. 1989. Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Ann. Rev. Phytopathol. 27:425–441.CrossRefGoogle Scholar
  58. Wilson, C. L., J. D. Franklin, and B. Otto. 1987. Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis. 71:316–319.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • Elizabeth A. Baldwin
  • Robert A. Baker

There are no affiliations available

Personalised recommendations