Skip to main content

Deamidation and Phosphorylation to Improve Protein Functionality in Foods

  • Chapter

Abstract

Many proteins utilized for human consumption require structural modification to achieve the proper functional properties for use as food ingredients. Food protein modification is normally accomplished by either chemical or enzymatic methods. Chemical hydrolysis with acid or base and enzymatic proteolysis have been popular and useful modification techniques used by the food processing industry. However, existing commercial modification procedures are limited in number and usefulness. Other chemical and enzymatic modification methods must be developed and made available to the food processor, particularly methods that do not significantly decrease the nutritional value of the protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler-Nissen, J. 1986. Enzymic Hydrolysis of Food Proteins, pp. 324–329. New York: Elsevier Applied Science Publishers.

    Google Scholar 

  • Aswad, D. W. 1984. Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25. J. Biol. Chem. 259:10,714–10,721.

    CAS  Google Scholar 

  • Battersby, R., and J. C. Robinson. 1955. Studies on specific chemical fission of peptide links. I. Rearrangements of aspartyl and glutamyl peptides. J. Chem. Soc. 1955:259–269.

    Article  Google Scholar 

  • Bercovici, D., H. F. Gaertner, and A. J. Puigserver. 1987. Transglutaminase-cata-lyzed incorporation of lysine oligomers into casein. J. Agric. Food Chem. 35:301–304.

    Article  CAS  Google Scholar 

  • Bhatt, N. P., K. Patel, and R. T. Borchardt. 1990. Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone. Pharm. Res. 7(6):593–599.

    Article  CAS  PubMed  Google Scholar 

  • Bingham, E. W., and H. M. Farrell, Jr. 1974. Casein kinase from the golgi apparatus of lactating mammary gland. J. Biol. Chem. 249(11):3647–3651.

    PubMed  CAS  Google Scholar 

  • Bjarnason, J., and K. J. Carpenter. 1969. Mechanisms of heat damage in proteins. I. Models with acylated lysine units. Brit. J. Nutr. 23(4):859–868.

    Article  CAS  PubMed  Google Scholar 

  • Brinegar, A. C., and E. Kinsella. 1980. Reversible modification of lysine in soybean proteins, using citraconic anhydride: Characterization of physical and chemical changes in soy protein isolate, the 7S globulin, and lypoxygenase. J. Agric. Food Chem. 28:818–824.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. 1982. The role of protein phosphorylation in neutral hormonal control of cellular activity. Nature 296:613–620.

    Article  CAS  PubMed  Google Scholar 

  • Ellinger, R. H. 1972. Phosphates in food processing. In CRC Handbook of Food Additives, 2d ed., vol. 1, ed. T. E. Furia, p. 640. Cleveland, OH: CRC Press.

    Google Scholar 

  • Feeney, R. E. 1977. Chemical modification of food proteins. In Food Proteins, ed. R. E. Feeney, and J. R. Whitaker, pp. 3–36. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Feeney, R. E., and J. R. Whitaker. 1985. Chemical and enzymatic modification of plant proteins. In New Protein Foods, vol. 5, ed. A. M. Altschul and H. L. Wilcke, pp. 181–219. New York: Academic Press.

    Chapter  Google Scholar 

  • Feeney, R. E., B. Yamasaki, and K. F. Geoghegan. 1982. Chemical modification of proteins: An overview. In Modification of Proteins: Food, Nutritional, and Pharmacological Aspects, ed. R. E. Feeney, and J. R. Whitaker, pp. 3–55. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Feller, K. 1989. Characterization of a protein kinase from soybean seedlings. Study of the variation of calcium-regulated kinase activity during infection with the incompatible race 1 and the compatible race 3 of Phytophthora Megasperma F. Sp. Glycinea by in vitro phosphorylation of calf thymus histone H1. Plant Sci. 60:67–75.

    Article  CAS  Google Scholar 

  • Folk, J. E., and J. S. Finlayson. 1977. The ϵ-(7-glutamyl)-lysine crosslink and the catalytic role of transglutaminases. In Advances in Protein Chemistry, vol. 31, ed. C. B. Anfinsen, J. T. Edsall, and F. M. Richards, p. 4. New York: Academic Press.

    Google Scholar 

  • Geiger, T., and S. Clarke. 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J. Biol. Chem. 262:785–794.

    PubMed  CAS  Google Scholar 

  • Gill, B. P., A. J. O’Shaughnessey, P. Henderson, and D. R. Headon. 1985. An assessment of potential of peptidoglutaminase I and II in modifying the charge characteristics of casein and whey proteins. Irish J. Food Sci. Technol. 9:33–41.

    CAS  Google Scholar 

  • Gowda, S., and D. T. N. Phillay. 1982. Cyclic AMP independent protein kinases from soybean cotyledons. Plant Sci. Lett. 25:49–59.

    Article  CAS  Google Scholar 

  • Hamada, J. S. 1989. “Potential of Gel Adsorption and Ultrafiltration for Immobilization and Multiuse of Peptidoglutaminase.” Paper read at 50th Annual Meeting of the Institute of Food Technology, 25–29 June 1989, Chicago, IL.

    Google Scholar 

  • Hamada, J. S. 1990a. “Peptidoglutaminase Deamidation of Proteins for Improved Food Use.” Paper read at 81st Annual Meeting of the American Oil Chemists’ Society, 22–25 April 1990, Baltimore, MD.

    Google Scholar 

  • Hamada, J. S. 1990b. “A Batch Ultrafiltration Reactor for Large-scale Peptidoglutaminase Deamidation of Food Proteins.” Paper read at 51st Annual Meeting of the Institute of Food Technology, 16–20 June 1990, Anahiem, CA.

    Google Scholar 

  • Hamada, J. S., and W. E. Marshall. 1988. Enhancement of peptidoglutaminase deamidation of soy proteins by heat treatment and/or proteolysis. J. Food Sci. 53:1132–1134, 1149.

    Article  CAS  Google Scholar 

  • Hamada, J. S., and W. E. Marshall. 1989. Preparation and functional properties of enzymatically deamidated soy proteins. J. Food Sci. 54:598–601, 635.

    Article  CAS  Google Scholar 

  • Hamada, J. S., F. F. Shih, A. W. Frank, and W. E. Marshall. 1988. Deamidation of soy peptides and proteins by Bacillus circulons peptidoglutaminase. J. Food Sci. 53:671–672.

    Article  CAS  Google Scholar 

  • Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.

    Article  CAS  PubMed  Google Scholar 

  • Harding, J. J. 1985. Nonenzymatic covalent posttranslational modification of protein in vivo. Adv. Protein Chem. 37:247–334.

    Article  CAS  PubMed  Google Scholar 

  • Hirotsuka, M., H. Taniguchi, H. Narita, and M. Kito. 1984. Functionality and digestibility of a highly phosphorylated soybean protein. Agric. Biol. Chem. 48:93–100.

    CAS  Google Scholar 

  • Huang, Y. T., and J. E. Kinsella. 1987. Effects of phosphorylation on emulsifying and foaming properties and digestibility of yeast protein. J. Food Sci. 52(6):1684–1688.

    Article  Google Scholar 

  • Hunter T., and J. A. Cooper. 1985. Protein-tyrosine kinases. Ann. Rev. Biochem. 54:897–930.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, H., S. Takase, T. Tanaka, and H. Hikita. 1989. Experimental investigation of G6P production and simultaneous ATP regeneration by conjugated enzymes in an ultrafiltration hollow-fiber reactor. Biotechnol. Bioeng. 34:369–379.

    Article  CAS  PubMed  Google Scholar 

  • Kato, A., Y. Lee, and K. Kobayashi. 1989. Deamidation and functional properties of food proteins by the treatment with immobilized chymotrypsin at alkaline pH. J. Food Sci. 54(5):1345–1347, 1372.

    Article  CAS  Google Scholar 

  • Kato, A., A. Tanaka, Y. Lee, N. Matsudomi, and K. Kobayashi. 1987a. Effects of deamidation with chymotrypsin at pH 10 on the functional properties of proteins. J. Agric. Food Chem. 35:285–288.

    Article  CAS  Google Scholar 

  • Kato, A., A. Tanaka, N. Matsudomi, and K. Kobayashi. 1987b. Deamidation of food proteins by protease in alkaline pH. J. Agric. Food Chem. 35:224–227.

    Article  CAS  Google Scholar 

  • Kikuchi, M., H. Hayashida, E. Nakano, and K. Sakahuchi. 1971. Peptidoglutaminase: Enzymes for selective deamidation of γ-amide of peptide-bound glutamine. Biochemistry 10(7):1222–1229.

    Article  CAS  PubMed  Google Scholar 

  • Kossiakoff, A. A. 1988. Tertiary structure is a principal determinant to protein deamidation. Science 240:191–194.

    Article  CAS  PubMed  Google Scholar 

  • Krebs, E. G. 1986. The enzymology of control by phosphorylation. In The Enzymes, vol. 17, ed. P. D. Boyer and E. G. Krebs, pp. 3–20. New York: Academic Press.

    Google Scholar 

  • Krebs, E. G., and J. A. Beavo. 1979. Phosophorylation-dephosphorylation of enzymes. Ann. Rev. Biochem. 48:923–959.

    Article  CAS  PubMed  Google Scholar 

  • Langan, T. A. 1973. Protein kinases and protein kinase substrates. Adv. Cyclic Nucleotide Res. 3:99–153.

    PubMed  CAS  Google Scholar 

  • Langer, R. S., B. K. Hamilton, C. R. Gardner, M. C. Archer, and C. K. Colton. 1976. Enzymatic regeneration of ATP. I. Alternative routes. AIChE J. 22(6):1079–1090.

    Article  CAS  Google Scholar 

  • Lewis, J. M., S. L. Haynie and G. M. Whitesides. 1979. An improved synthesis of diammonium acetyl phosphate. J. Org. Chem. 44(5):864–865.

    Article  CAS  Google Scholar 

  • Lin, P. P., and J. L. Key. 1980. Histone kinase from soybean hypocotyls. Plant Physiol. 66:360–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorand, L., and S. Conrad. 1984. Transglutaminases. Mol. Cell. Biochem. 58:9–35.

    Article  CAS  PubMed  Google Scholar 

  • Lura, R., and V. Schirch. 1988. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues. Biochemistry 27:1611–1611.

    Article  Google Scholar 

  • Matheis, G., and J. R. Whitaker. 1984. Chemical phosphorylation of food proteins: An overview and prospectus. J. Agric. Food Chem. 32:699–705.

    Article  CAS  Google Scholar 

  • Matheis, G., M. H. Penner, R. E. Feeney, and J. R. Whitaker. 1983. Phosphorylation of casein and lysozyme by phosphorus oxychloride. J. Agric. Food Chem. 31(2):379–387.

    Article  CAS  PubMed  Google Scholar 

  • Matsudomi, N., T. Sasaki, A. Kato, and K. Kobayashi. 1985. Conformational changes and functional properties of acid-modified soy protein. Agric. Biol. Chem. 49(5):1251–1256.

    CAS  Google Scholar 

  • Meinwald, Y. C, E. R. Stinson, and A. Scheraga. 1986. Deamidation of the asparaginyl-glycyl sequence. Int. J. Peptide Protein Res. 28:79–84.

    Article  CAS  Google Scholar 

  • Mercier, J.-C, F. Grosclaude, and B. Ribadeau Dumas. 1972. Primary structure of bovine caseins. Milchwissenschaft 27:402–408.

    CAS  Google Scholar 

  • Meyer, E. W., and L. D. Williams. 1977. Chemical modification of soy proteins. In Food Proteins ed. R. E. Feeney and J. R. Whitaker, pp. 52–66. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Motoki, M., K. Seguro, N. Nio, and K. Takinami. 1986. Glutamine-specific deamidation of αs1casein by transglutaminase. Agric. Biol. Chem. 50(12):3025–3030.

    CAS  Google Scholar 

  • Murray, M. G., T. J. Guilfoyle, and J. L. Key. 1978. Isolation and characterization of a chromatin-associated protein kinase from soybean. Plant Physiol. 61:1023–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mycek, M. J. and H. Waelsch. 1960. The enzymatic deamidation of proteins. J. Biol. Chem. 235(12):3513–3517.

    PubMed  CAS  Google Scholar 

  • Nestler, E. J., S. I. Walaas, and P. Greengard. 1984. Neuronal phosphoproteins: Physical and clinical implications. Science 225:1357–1364.

    Article  CAS  PubMed  Google Scholar 

  • Okuno, S., and H. Fujisawa. 1990. Stabilization, purification and crystalization of catalytic subunit of cAMP-dependent protein kinase from bovine heart. Biochim. Biophys. Acta 1038(2):204–208.

    Article  CAS  PubMed  Google Scholar 

  • Patel, K., and R. T. Borchardt. 1990a. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Pharm. Res. 7(7):703–711.

    Article  CAS  PubMed  Google Scholar 

  • Patel, K., and R. T. Borchardt. 1990b. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Pharm. Res. 7(8):787–793.

    Article  CAS  PubMed  Google Scholar 

  • Pinna, L. A., F. Meggio, and F. Merchiori. 1990. Type-2 casein kinases: General properties and substrate specificity. In Peptides and Protein Phosphorylation, ed. B. C. Kemp, pp. 145–169. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Polya, G. M., and J. R. Davies. 1982. Resolution of Ca2+-calmodulin-activated protein kinase from wheat germ. FEBS Lett. 150:167–171.

    Article  CAS  Google Scholar 

  • Putnam-Evans, C. L., A. C. Harmon, and M. J. Cormier. 1990. Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochemistry 29:2488–2495.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, A. B., J. W. Scotchler, and J. H. McKerrow. 1973. Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides. J. Am. Chem. Soc. 95:8156–8189.

    Article  CAS  PubMed  Google Scholar 

  • Ross, L. F. 1989. Optimization of enzymatic phosphorylation of soybean storage proteins: Glycinin and β-conglycinin. J. Agric. Food Chem. 37(5):1257–1261.

    Article  CAS  Google Scholar 

  • Ross, L. F., and D. Bhatnagar. 1989. Enzymatic phosphorylation of soybean proteins. J. Agric. Food Chem. 37(4):841–844.

    Article  CAS  Google Scholar 

  • Rubin, C. S., and O. M. Rosen. 1975. Protein phosphorylation. Ann. Rev. Bio-chem. 44:831–887.

    Article  CAS  Google Scholar 

  • Seguro, K., and M. Motoki. 1989. Enzymatic phosphorylation of soybean proteins by protein kinase. Agric. Biol. Chem. 53(12):3263–3268.

    CAS  Google Scholar 

  • Seguro, K., and M. Motoki. 1990. Functional properties of enzymatically phosphorylated soybean proteins. Agric. Biol. Chem. 54(5); 1271–1274.

    CAS  Google Scholar 

  • Seguro, K., S. Nio, and M. Motoki. 1986. The Manufacture method of Modified Proteins. Japanese Patent No. 128,843 (March, 1986).

    Google Scholar 

  • Shih, F. F. 1987. Deamidation of protein in a soy extract by ion exchange resin catalysis. J. Food Sci. 52(6):1529–1531.

    Article  CAS  Google Scholar 

  • Shih, F. F. 1989. Partially Deamidated Oilseed Proteins and Process for the Preparation Thereof. U.S. Patent 4,824,940 (Apr. 25, 1989).

    Google Scholar 

  • Shih, F. F. 1990a. Deamidation during treatment of soy protein with protease. J. Food Sci. 55(1):127–129, 132.

    Article  CAS  Google Scholar 

  • Shih, F. F. 1990b. Deamidation studies on selected food proteins. J. Am. Oil Chem. Soc. 67(10):675–677.

    Article  CAS  Google Scholar 

  • Shih, F. F. 1991. Effect of anions on the deamidation of soy protein J. Food Sci. 56(2):452–454.

    Article  CAS  Google Scholar 

  • Shih, F. F., and A. D. Kalmar. 1987. SDS-catalyzed deamidation of oilseed proteins. J. Agric. Food Chem. 35(5):672–675.

    Article  CAS  Google Scholar 

  • Shoji, S., D. C. Parmelee, R. D. Wade, S. Kumar, L. H. Ericsson, and K. A. Walsh. 1981. Complete amino acid sequence of the catalytic subunit of bovine muscle cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. (USA) 78:848–851.

    Article  CAS  Google Scholar 

  • Shoji, S., L. H. Ericsson, K. A. Walsh, E. H. Fischer, and K. Tetani. 1983. Amino acid sequence of the catalytic subunit of bovine type II adenosine cyclic 3′,5′-phosphate-dependent protein kinase. Biochemistry 22:3702–3709.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. B., J. B. White, J. B. Siegel, and E. G. Krebs. 1981. Cyclic AMP-dependent protein kinase: Primary steps of allosteric regulation. In Protein Phosphorylation, ed. O. R. Rosen and E. G. Krebs, pp. 55–65. Cold Spring Harbor, ME: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Sondheimer, E., and R. W. Holley. 1954. Imides form asparagine and glutamine. J. Am. Chem. Soc. 76:2467–2470.

    Article  CAS  Google Scholar 

  • Sung, H., H. Chen, T. Liu, and J. Su. 1983. Improvement of the functionalities of soy protein isolate through chemical phosphorylation. J. Food Sci. 48:716–721.

    Article  CAS  Google Scholar 

  • Uhler, M. D., and G. S. McKnight. 1987. Expression of cDNAs for two isoforms of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 262:15,202–15,207.

    CAS  Google Scholar 

  • Uhler, M. D., J. C. Chrivia, and G. S. McKnight. 1986. Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 261:15,360–15,363.

    CAS  Google Scholar 

  • Uhler, M. D., D. F. Carmichael, D. C. Lee, J. C. Chrivia, E. G. Krebs, and G. S. McKnight. 1986. Isolation of the cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. (USA) 83:1300–1304.

    Article  CAS  Google Scholar 

  • Whitaker, J. R. 1977. Enzymatic modification of proteins applicable to foods. In Food Proteins, ed. R. E. Feeney and J. R. Whitaker, pp. 95–155. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Whitaker, J. R., and A. J. Puigserver. 1982. Fundamentals and applications of enzymatic modifications of proteins: An overview. In Modification of Proteins: Food, Nutritional, and Pharmacological Aspects, ed. R. E. Feeney, and J. R. Whitaker, pp. 57–87. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Woo, S. L., and T. Richardson, 1983. Functional properties of phosphorylated β-lectoglobulin. J. Dairy Sci. 66:984–987.

    Article  CAS  Google Scholar 

  • Woo, S. L., L. K. Creamer, and T. Richardson, 1982. Chemical phosphorylation of bovine β-lactoglobulin. J. Agric. Food Chem. 30:65–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Van Nostrand Reinhold

About this chapter

Cite this chapter

Shih, F.F., Hamada, J.S., Marshall, W.E. (1992). Deamidation and Phosphorylation to Improve Protein Functionality in Foods. In: Bhatnagar, D., Cleveland, T.E. (eds) Molecular Approaches to Improving Food Quality and Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8070-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8070-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8072-6

  • Online ISBN: 978-1-4684-8070-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics