Deamidation and Phosphorylation to Improve Protein Functionality in Foods

  • Frederick F. Shih
  • Jamel S. Hamada
  • Wayne E. Marshall


Many proteins utilized for human consumption require structural modification to achieve the proper functional properties for use as food ingredients. Food protein modification is normally accomplished by either chemical or enzymatic methods. Chemical hydrolysis with acid or base and enzymatic proteolysis have been popular and useful modification techniques used by the food processing industry. However, existing commercial modification procedures are limited in number and usefulness. Other chemical and enzymatic modification methods must be developed and made available to the food processor, particularly methods that do not significantly decrease the nutritional value of the protein.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler-Nissen, J. 1986. Enzymic Hydrolysis of Food Proteins, pp. 324–329. New York: Elsevier Applied Science Publishers.Google Scholar
  2. Aswad, D. W. 1984. Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25. J. Biol. Chem. 259:10,714–10,721.Google Scholar
  3. Battersby, R., and J. C. Robinson. 1955. Studies on specific chemical fission of peptide links. I. Rearrangements of aspartyl and glutamyl peptides. J. Chem. Soc. 1955:259–269.CrossRefGoogle Scholar
  4. Bercovici, D., H. F. Gaertner, and A. J. Puigserver. 1987. Transglutaminase-cata-lyzed incorporation of lysine oligomers into casein. J. Agric. Food Chem. 35:301–304.CrossRefGoogle Scholar
  5. Bhatt, N. P., K. Patel, and R. T. Borchardt. 1990. Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone. Pharm. Res. 7(6):593–599.CrossRefGoogle Scholar
  6. Bingham, E. W., and H. M. Farrell, Jr. 1974. Casein kinase from the golgi apparatus of lactating mammary gland. J. Biol. Chem. 249(11):3647–3651.PubMedGoogle Scholar
  7. Bjarnason, J., and K. J. Carpenter. 1969. Mechanisms of heat damage in proteins. I. Models with acylated lysine units. Brit. J. Nutr. 23(4):859–868.CrossRefGoogle Scholar
  8. Brinegar, A. C., and E. Kinsella. 1980. Reversible modification of lysine in soybean proteins, using citraconic anhydride: Characterization of physical and chemical changes in soy protein isolate, the 7S globulin, and lypoxygenase. J. Agric. Food Chem. 28:818–824.CrossRefGoogle Scholar
  9. Cohen, P. 1982. The role of protein phosphorylation in neutral hormonal control of cellular activity. Nature 296:613–620.CrossRefGoogle Scholar
  10. Ellinger, R. H. 1972. Phosphates in food processing. In CRC Handbook of Food Additives, 2d ed., vol. 1, ed. T. E. Furia, p. 640. Cleveland, OH: CRC Press.Google Scholar
  11. Feeney, R. E. 1977. Chemical modification of food proteins. In Food Proteins, ed. R. E. Feeney, and J. R. Whitaker, pp. 3–36. Washington DC: American Chemical Society.CrossRefGoogle Scholar
  12. Feeney, R. E., and J. R. Whitaker. 1985. Chemical and enzymatic modification of plant proteins. In New Protein Foods, vol. 5, ed. A. M. Altschul and H. L. Wilcke, pp. 181–219. New York: Academic Press.CrossRefGoogle Scholar
  13. Feeney, R. E., B. Yamasaki, and K. F. Geoghegan. 1982. Chemical modification of proteins: An overview. In Modification of Proteins: Food, Nutritional, and Pharmacological Aspects, ed. R. E. Feeney, and J. R. Whitaker, pp. 3–55. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  14. Feller, K. 1989. Characterization of a protein kinase from soybean seedlings. Study of the variation of calcium-regulated kinase activity during infection with the incompatible race 1 and the compatible race 3 of Phytophthora Megasperma F. Sp. Glycinea by in vitro phosphorylation of calf thymus histone H1. Plant Sci. 60:67–75.CrossRefGoogle Scholar
  15. Folk, J. E., and J. S. Finlayson. 1977. The ϵ-(7-glutamyl)-lysine crosslink and the catalytic role of transglutaminases. In Advances in Protein Chemistry, vol. 31, ed. C. B. Anfinsen, J. T. Edsall, and F. M. Richards, p. 4. New York: Academic Press.Google Scholar
  16. Geiger, T., and S. Clarke. 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J. Biol. Chem. 262:785–794.PubMedGoogle Scholar
  17. Gill, B. P., A. J. O’Shaughnessey, P. Henderson, and D. R. Headon. 1985. An assessment of potential of peptidoglutaminase I and II in modifying the charge characteristics of casein and whey proteins. Irish J. Food Sci. Technol. 9:33–41.Google Scholar
  18. Gowda, S., and D. T. N. Phillay. 1982. Cyclic AMP independent protein kinases from soybean cotyledons. Plant Sci. Lett. 25:49–59.CrossRefGoogle Scholar
  19. Hamada, J. S. 1989. “Potential of Gel Adsorption and Ultrafiltration for Immobilization and Multiuse of Peptidoglutaminase.” Paper read at 50th Annual Meeting of the Institute of Food Technology, 25–29 June 1989, Chicago, IL.Google Scholar
  20. Hamada, J. S. 1990a. “Peptidoglutaminase Deamidation of Proteins for Improved Food Use.” Paper read at 81st Annual Meeting of the American Oil Chemists’ Society, 22–25 April 1990, Baltimore, MD.Google Scholar
  21. Hamada, J. S. 1990b. “A Batch Ultrafiltration Reactor for Large-scale Peptidoglutaminase Deamidation of Food Proteins.” Paper read at 51st Annual Meeting of the Institute of Food Technology, 16–20 June 1990, Anahiem, CA.Google Scholar
  22. Hamada, J. S., and W. E. Marshall. 1988. Enhancement of peptidoglutaminase deamidation of soy proteins by heat treatment and/or proteolysis. J. Food Sci. 53:1132–1134, 1149.CrossRefGoogle Scholar
  23. Hamada, J. S., and W. E. Marshall. 1989. Preparation and functional properties of enzymatically deamidated soy proteins. J. Food Sci. 54:598–601, 635.CrossRefGoogle Scholar
  24. Hamada, J. S., F. F. Shih, A. W. Frank, and W. E. Marshall. 1988. Deamidation of soy peptides and proteins by Bacillus circulons peptidoglutaminase. J. Food Sci. 53:671–672.CrossRefGoogle Scholar
  25. Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.CrossRefGoogle Scholar
  26. Harding, J. J. 1985. Nonenzymatic covalent posttranslational modification of protein in vivo. Adv. Protein Chem. 37:247–334.CrossRefGoogle Scholar
  27. Hirotsuka, M., H. Taniguchi, H. Narita, and M. Kito. 1984. Functionality and digestibility of a highly phosphorylated soybean protein. Agric. Biol. Chem. 48:93–100.Google Scholar
  28. Huang, Y. T., and J. E. Kinsella. 1987. Effects of phosphorylation on emulsifying and foaming properties and digestibility of yeast protein. J. Food Sci. 52(6):1684–1688.CrossRefGoogle Scholar
  29. Hunter T., and J. A. Cooper. 1985. Protein-tyrosine kinases. Ann. Rev. Biochem. 54:897–930.CrossRefGoogle Scholar
  30. Ishikawa, H., S. Takase, T. Tanaka, and H. Hikita. 1989. Experimental investigation of G6P production and simultaneous ATP regeneration by conjugated enzymes in an ultrafiltration hollow-fiber reactor. Biotechnol. Bioeng. 34:369–379.CrossRefGoogle Scholar
  31. Kato, A., Y. Lee, and K. Kobayashi. 1989. Deamidation and functional properties of food proteins by the treatment with immobilized chymotrypsin at alkaline pH. J. Food Sci. 54(5):1345–1347, 1372.CrossRefGoogle Scholar
  32. Kato, A., A. Tanaka, Y. Lee, N. Matsudomi, and K. Kobayashi. 1987a. Effects of deamidation with chymotrypsin at pH 10 on the functional properties of proteins. J. Agric. Food Chem. 35:285–288.CrossRefGoogle Scholar
  33. Kato, A., A. Tanaka, N. Matsudomi, and K. Kobayashi. 1987b. Deamidation of food proteins by protease in alkaline pH. J. Agric. Food Chem. 35:224–227.CrossRefGoogle Scholar
  34. Kikuchi, M., H. Hayashida, E. Nakano, and K. Sakahuchi. 1971. Peptidoglutaminase: Enzymes for selective deamidation of γ-amide of peptide-bound glutamine. Biochemistry 10(7):1222–1229.CrossRefGoogle Scholar
  35. Kossiakoff, A. A. 1988. Tertiary structure is a principal determinant to protein deamidation. Science 240:191–194.CrossRefGoogle Scholar
  36. Krebs, E. G. 1986. The enzymology of control by phosphorylation. In The Enzymes, vol. 17, ed. P. D. Boyer and E. G. Krebs, pp. 3–20. New York: Academic Press.Google Scholar
  37. Krebs, E. G., and J. A. Beavo. 1979. Phosophorylation-dephosphorylation of enzymes. Ann. Rev. Biochem. 48:923–959.CrossRefGoogle Scholar
  38. Langan, T. A. 1973. Protein kinases and protein kinase substrates. Adv. Cyclic Nucleotide Res. 3:99–153.PubMedGoogle Scholar
  39. Langer, R. S., B. K. Hamilton, C. R. Gardner, M. C. Archer, and C. K. Colton. 1976. Enzymatic regeneration of ATP. I. Alternative routes. AIChE J. 22(6):1079–1090.CrossRefGoogle Scholar
  40. Lewis, J. M., S. L. Haynie and G. M. Whitesides. 1979. An improved synthesis of diammonium acetyl phosphate. J. Org. Chem. 44(5):864–865.CrossRefGoogle Scholar
  41. Lin, P. P., and J. L. Key. 1980. Histone kinase from soybean hypocotyls. Plant Physiol. 66:360–367.CrossRefGoogle Scholar
  42. Lorand, L., and S. Conrad. 1984. Transglutaminases. Mol. Cell. Biochem. 58:9–35.CrossRefGoogle Scholar
  43. Lura, R., and V. Schirch. 1988. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues. Biochemistry 27:1611–1611.CrossRefGoogle Scholar
  44. Matheis, G., and J. R. Whitaker. 1984. Chemical phosphorylation of food proteins: An overview and prospectus. J. Agric. Food Chem. 32:699–705.CrossRefGoogle Scholar
  45. Matheis, G., M. H. Penner, R. E. Feeney, and J. R. Whitaker. 1983. Phosphorylation of casein and lysozyme by phosphorus oxychloride. J. Agric. Food Chem. 31(2):379–387.CrossRefGoogle Scholar
  46. Matsudomi, N., T. Sasaki, A. Kato, and K. Kobayashi. 1985. Conformational changes and functional properties of acid-modified soy protein. Agric. Biol. Chem. 49(5):1251–1256.Google Scholar
  47. Meinwald, Y. C, E. R. Stinson, and A. Scheraga. 1986. Deamidation of the asparaginyl-glycyl sequence. Int. J. Peptide Protein Res. 28:79–84.CrossRefGoogle Scholar
  48. Mercier, J.-C, F. Grosclaude, and B. Ribadeau Dumas. 1972. Primary structure of bovine caseins. Milchwissenschaft 27:402–408.Google Scholar
  49. Meyer, E. W., and L. D. Williams. 1977. Chemical modification of soy proteins. In Food Proteins ed. R. E. Feeney and J. R. Whitaker, pp. 52–66. Washington DC: American Chemical Society.CrossRefGoogle Scholar
  50. Motoki, M., K. Seguro, N. Nio, and K. Takinami. 1986. Glutamine-specific deamidation of αs1casein by transglutaminase. Agric. Biol. Chem. 50(12):3025–3030.Google Scholar
  51. Murray, M. G., T. J. Guilfoyle, and J. L. Key. 1978. Isolation and characterization of a chromatin-associated protein kinase from soybean. Plant Physiol. 61:1023–1030.CrossRefGoogle Scholar
  52. Mycek, M. J. and H. Waelsch. 1960. The enzymatic deamidation of proteins. J. Biol. Chem. 235(12):3513–3517.PubMedGoogle Scholar
  53. Nestler, E. J., S. I. Walaas, and P. Greengard. 1984. Neuronal phosphoproteins: Physical and clinical implications. Science 225:1357–1364.CrossRefGoogle Scholar
  54. Okuno, S., and H. Fujisawa. 1990. Stabilization, purification and crystalization of catalytic subunit of cAMP-dependent protein kinase from bovine heart. Biochim. Biophys. Acta 1038(2):204–208.CrossRefGoogle Scholar
  55. Patel, K., and R. T. Borchardt. 1990a. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Pharm. Res. 7(7):703–711.CrossRefGoogle Scholar
  56. Patel, K., and R. T. Borchardt. 1990b. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Pharm. Res. 7(8):787–793.CrossRefGoogle Scholar
  57. Pinna, L. A., F. Meggio, and F. Merchiori. 1990. Type-2 casein kinases: General properties and substrate specificity. In Peptides and Protein Phosphorylation, ed. B. C. Kemp, pp. 145–169. Boca Raton, FL: CRC Press.Google Scholar
  58. Polya, G. M., and J. R. Davies. 1982. Resolution of Ca2+-calmodulin-activated protein kinase from wheat germ. FEBS Lett. 150:167–171.CrossRefGoogle Scholar
  59. Putnam-Evans, C. L., A. C. Harmon, and M. J. Cormier. 1990. Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochemistry 29:2488–2495.CrossRefGoogle Scholar
  60. Robinson, A. B., J. W. Scotchler, and J. H. McKerrow. 1973. Rates of nonenzymatic deamidation of glutaminyl and asparaginyl residues in pentapeptides. J. Am. Chem. Soc. 95:8156–8189.CrossRefGoogle Scholar
  61. Ross, L. F. 1989. Optimization of enzymatic phosphorylation of soybean storage proteins: Glycinin and β-conglycinin. J. Agric. Food Chem. 37(5):1257–1261.CrossRefGoogle Scholar
  62. Ross, L. F., and D. Bhatnagar. 1989. Enzymatic phosphorylation of soybean proteins. J. Agric. Food Chem. 37(4):841–844.CrossRefGoogle Scholar
  63. Rubin, C. S., and O. M. Rosen. 1975. Protein phosphorylation. Ann. Rev. Bio-chem. 44:831–887.CrossRefGoogle Scholar
  64. Seguro, K., and M. Motoki. 1989. Enzymatic phosphorylation of soybean proteins by protein kinase. Agric. Biol. Chem. 53(12):3263–3268.Google Scholar
  65. Seguro, K., and M. Motoki. 1990. Functional properties of enzymatically phosphorylated soybean proteins. Agric. Biol. Chem. 54(5); 1271–1274.Google Scholar
  66. Seguro, K., S. Nio, and M. Motoki. 1986. The Manufacture method of Modified Proteins. Japanese Patent No. 128,843 (March, 1986).Google Scholar
  67. Shih, F. F. 1987. Deamidation of protein in a soy extract by ion exchange resin catalysis. J. Food Sci. 52(6):1529–1531.CrossRefGoogle Scholar
  68. Shih, F. F. 1989. Partially Deamidated Oilseed Proteins and Process for the Preparation Thereof. U.S. Patent 4,824,940 (Apr. 25, 1989).Google Scholar
  69. Shih, F. F. 1990a. Deamidation during treatment of soy protein with protease. J. Food Sci. 55(1):127–129, 132.CrossRefGoogle Scholar
  70. Shih, F. F. 1990b. Deamidation studies on selected food proteins. J. Am. Oil Chem. Soc. 67(10):675–677.CrossRefGoogle Scholar
  71. Shih, F. F. 1991. Effect of anions on the deamidation of soy protein J. Food Sci. 56(2):452–454.CrossRefGoogle Scholar
  72. Shih, F. F., and A. D. Kalmar. 1987. SDS-catalyzed deamidation of oilseed proteins. J. Agric. Food Chem. 35(5):672–675.CrossRefGoogle Scholar
  73. Shoji, S., D. C. Parmelee, R. D. Wade, S. Kumar, L. H. Ericsson, and K. A. Walsh. 1981. Complete amino acid sequence of the catalytic subunit of bovine muscle cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. (USA) 78:848–851.CrossRefGoogle Scholar
  74. Shoji, S., L. H. Ericsson, K. A. Walsh, E. H. Fischer, and K. Tetani. 1983. Amino acid sequence of the catalytic subunit of bovine type II adenosine cyclic 3′,5′-phosphate-dependent protein kinase. Biochemistry 22:3702–3709.CrossRefGoogle Scholar
  75. Smith, S. B., J. B. White, J. B. Siegel, and E. G. Krebs. 1981. Cyclic AMP-dependent protein kinase: Primary steps of allosteric regulation. In Protein Phosphorylation, ed. O. R. Rosen and E. G. Krebs, pp. 55–65. Cold Spring Harbor, ME: Cold Spring Harbor Laboratory.Google Scholar
  76. Sondheimer, E., and R. W. Holley. 1954. Imides form asparagine and glutamine. J. Am. Chem. Soc. 76:2467–2470.CrossRefGoogle Scholar
  77. Sung, H., H. Chen, T. Liu, and J. Su. 1983. Improvement of the functionalities of soy protein isolate through chemical phosphorylation. J. Food Sci. 48:716–721.CrossRefGoogle Scholar
  78. Uhler, M. D., and G. S. McKnight. 1987. Expression of cDNAs for two isoforms of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 262:15,202–15,207.Google Scholar
  79. Uhler, M. D., J. C. Chrivia, and G. S. McKnight. 1986. Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 261:15,360–15,363.Google Scholar
  80. Uhler, M. D., D. F. Carmichael, D. C. Lee, J. C. Chrivia, E. G. Krebs, and G. S. McKnight. 1986. Isolation of the cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. (USA) 83:1300–1304.CrossRefGoogle Scholar
  81. Whitaker, J. R. 1977. Enzymatic modification of proteins applicable to foods. In Food Proteins, ed. R. E. Feeney and J. R. Whitaker, pp. 95–155. Washington DC: American Chemical Society.CrossRefGoogle Scholar
  82. Whitaker, J. R., and A. J. Puigserver. 1982. Fundamentals and applications of enzymatic modifications of proteins: An overview. In Modification of Proteins: Food, Nutritional, and Pharmacological Aspects, ed. R. E. Feeney, and J. R. Whitaker, pp. 57–87. Washington DC: American Chemical Society.CrossRefGoogle Scholar
  83. Woo, S. L., and T. Richardson, 1983. Functional properties of phosphorylated β-lectoglobulin. J. Dairy Sci. 66:984–987.CrossRefGoogle Scholar
  84. Woo, S. L., L. K. Creamer, and T. Richardson, 1982. Chemical phosphorylation of bovine β-lactoglobulin. J. Agric. Food Chem. 30:65–70.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • Frederick F. Shih
  • Jamel S. Hamada
  • Wayne E. Marshall

There are no affiliations available

Personalised recommendations