Skip to main content

Enhancing the Nutritional Quality of Crop Plants: Design, Construction, and Expression of an Artificial Plant Storage Protein Gene

  • Chapter
Book cover Molecular Approaches to Improving Food Quality and Safety

Abstract

The composition of storage proteins, a major food reservoir for the developing seeds, determines the nutritional value of plants and grains that are used as foods for man and domestic animals. The amount of protein varies with genotype or cultivar, but in general, cereals contain 10% of the dry weight of the seed as protein, while in legumes, the protein content varies between 20% and 30% of the dry weight. In many seeds, storage proteins account for 50% or more of the total protein, and thus determine the protein quality of seeds. Each year the total world cereal harvest amounts to some 1700 million tons of grain (Keris et al. 1985). This harvest yields about 85 million tons of cereal storage proteins harvested each year and contributes about 55% of the total protein intake of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agros, P., K. Pederson, D. Marks, and B. A. Larkins. 1982. A structural model for maize zein proteins. J. Biol. Chem. 257:9984–9990.

    Google Scholar 

  • Agros, P., S. V. L. Naravana, and N. C. Nielsen. 1985. Structural similarity between legumin and vicillin storage proteins from legumes. EMBO J. 4:1111–1117.

    Article  Google Scholar 

  • Altenbach, S. B., K. W. Pederson, G. Meeker, L. C. Staraci, and S. S. M. Sun. 1989. Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. PlantMol. Biol. 13:513–522.

    CAS  Google Scholar 

  • Badley, R. A., D. Atkinson, H. Häuser, D. Oldani, J. P. Green, and J. M. Stubbs. 1975. The structure, physical and chemical properties of the soybean protein glycinin. Biochim. Biophys. Acta 412:214–228.

    Article  CAS  PubMed  Google Scholar 

  • Bartels, D., and R. D. Tompson. 1983. The characterization of cDNA clones coding for wheat storage proteins. Nucleic Acid Res. 11:2961–2977.

    Article  CAS  PubMed  Google Scholar 

  • Beachy, R. N., Z. L. Chen, R. B. Horsch, S. G. Rogers, N. J. Hoffman, and R. T. Fraley. 1985. Accumulation and assembly of soybean ß-conglycinin in seeds of transformed petunia plants. EMBO J. 4:3047–3053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bierzynski, A., P. S. Kim, and R. L. Baldwin. 1982. A salt bridge stabilizes the helix formed by isolated c-peptide of RNAse A. Proc. Natl. Acad. Sci. (USA) 79:2470–2474.

    Article  CAS  Google Scholar 

  • Blundell, T. L., S. J. Thornton, S. K. Burley, and G. A. Petsco. 1986. Atomic interactions. Science 234:1005–1009.

    Article  CAS  Google Scholar 

  • Bollini, R., and M. J. Chrispeels. 1978. Characterization and subcellular localization of vicillin and phyto-hemaglutinin, the two major reserve proteins of Phaseolus vulgaris. Planta 142:291–298.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z. L., N. S. Pan, and R. N. Beachy. 1988. A DNA sequence element that confers seed-specific enhancement of a constitutive promoter. EMBO J. 7:297–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Z. L., M. A. Schüler, and R. N. Beachy. 1986. Functional analysis of regulatory elements in a plant embryo-specific gene. Proc. Natl. Acad. Sci. (USA) 83:8560–8564.

    Article  CAS  Google Scholar 

  • Chou, P. Y., and G. D. Fasman. 1978. Prediction of the secondary structure of proteins from amino acid sequence. Adv. Enzymol. 47:45–148.

    PubMed  CAS  Google Scholar 

  • Colot, V., L. S. Robert, T. A. Kavanagh, M. W. Beavan, and R. D. Tompson. 1987. Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J. 6:3559–3564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Creighton, T. E. 1984. Proteins. New York: Freeman.

    Google Scholar 

  • Crouch, M., K. Tenberge, N. E. Simone, and R. Ferl. 1983. Sequence of the 1.7K storage protein of Brassica napus. Mol. Appl. Genet. 2:273–283.

    CAS  Google Scholar 

  • Degrado, W. F., and J. D. Lear. 1985. Induction of peptide conformation at apolar/water interfaces. J. Am. Chem. Soc. 107:7684–7689.

    Article  CAS  Google Scholar 

  • Degrado, W. F., Z. R. Wasserman, and J. D. Lear. 1989. Protein design, a minimalist approach. Science 241:622–628.

    Article  Google Scholar 

  • Esen, E. 1986. Separation of alcohol-soluble proteins (zeins) from maize into three fractions by differential solubility. Plant Physiol. 80:623–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasman, G. 1989. Protein conformational prediction. Trends Biochem. Sci. 14:295–299.

    Article  CAS  PubMed  Google Scholar 

  • Finley, D., and A. Varshavsky. 1985. The ubiquitin system: Functions and mechanisms. Trends Biochem. Sci. 10:343–346.

    Article  CAS  Google Scholar 

  • Forde, B. G., M. Kreis, M. S. Williamson, R. P. Fry, and J. Pywell. 1985. Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J. 4:9–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg, A. L., and A. C. St. John. 1976. Intracellular protein degradation in mammalian and bacterial cells: part 2. Ann. Rev. Biochem. 45:747–803.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood, J. S., and M. J. Chrispeels. 1985. Correct targeting of the bean storage protein phaseolin in the seeds of transformed tobacco. Plant Physiol. 79:65–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross, D. S., and W. T. Garrard. 1987. Poising chromatin for transcription. Trends Biochem. 12:293–296.

    Article  CAS  Google Scholar 

  • Ho S. P., and W. F. Degrado. 1987. Design of a 4-helix bundle protein: Synthesis of peptides which self-associate into helical protein. J. Am. Chem. Soc. 109:6751–6758.

    Article  CAS  Google Scholar 

  • Hoffmann, L. E., D. D. Donaldson, and E. M. Herman. 1988. A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. Plant Mol. Biol. 11:717–729.

    Article  Google Scholar 

  • Hoffmann, L. E., D. D. Donaldson, R. Bookland, K. Rashka, and E. M. Herman. 1987. Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J. 6:3213–3221.

    Article  Google Scholar 

  • Hol, W. G., and H. C. Sanders. 1981. Dipole of the α-helix and β-sheet: Their role in protein folding. Nature 294:532–536.

    Article  CAS  PubMed  Google Scholar 

  • Jaynes, J. M., P. Nagpala, L. Destefano, T. Denny, C. Clark, and J.-H. Kim. 1992. Expression of a de novo designed peptide in transgenic tobacco plants confers enhanced resistance to Pseudomonas solanacearum infection. Submitted to Proc. Natl. Acad. Sci. (USA)

    Google Scholar 

  • Jaynes, J. M., M. S. Yang, N. O. Espinoza, and J. H. Dodds. 1986. Plant protein improvement by genetic engineering: Use of synthetic genes. Trends Biotechnol. 4:314–320.

    Article  CAS  Google Scholar 

  • Jones, J. D. G., and D. E. Gilbert. 1987. T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol.Gen. Genet. 207:478–485.

    Article  CAS  Google Scholar 

  • Kabsch, W., and C. Sander. 1983. How good are predictions of protein structure? FEBS Lett. 155:179–182.

    Article  CAS  PubMed  Google Scholar 

  • Kane, J. F., and D. L. Hartley. 1988. Formation of recombinant protein inclusion bodies in Escherichia coli. Trends Biotechnol. 6:95–101.

    Article  CAS  Google Scholar 

  • Kasarda, D. D., T. W. Okita, J. E. Bernardin, P. A. Baecker, and C. C. Nimmo. 1984. DNA and amino acid sequences of alpha and gamma gliadins. Proc. Natl. Acad. Sci. (USA) 81:4712–4716.

    Article  CAS  Google Scholar 

  • Keris, M., P. R. Shewry, B. G. Forde, G. Forde, and J. Miflin. 1985. Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. Oxford Survey Plant Mol. Cell Biol. 2:253–317.

    Google Scholar 

  • Komoriya, A., and J. M. Chaiken. 1982. Sequence modeling using semisynthetic ribonuclease S. J. Biol. Chem. 257:2599–2604.

    PubMed  CAS  Google Scholar 

  • Larkins, B. A. 1983. Genetic engineering of seed storage protein. In Genetic Engineering of Plants, ed. B. A. Larkins, pp. 93–120. New York: Plenum.

    Chapter  Google Scholar 

  • Larkins, B. A., K. Pederson, M. D. Mark, and D. R. Wilson. 1984. The zein protein of maize endosperm. Trends Biochem. Sci. 9:306–308.

    Article  CAS  Google Scholar 

  • Lawrence, M. C., E. Suzuki, J. N. Varghes, P. C. Davis, A. Van Donkelaar, P. A. Tulloch, and P. M. Collman. 1990. The three-dimensional structure of the seed storage protein phaseolin at 3 À resolution. EMBO J. 9:9–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lear, J. D., Z. R. Wasserman, and W. F. Degrado. 1988. Synthetic amphiphilic peptide model for protein ion channels. Science 240:1177–1181.

    Article  CAS  PubMed  Google Scholar 

  • Lending, C. R., A. Kriz, B. A. Larkins, and C. E. Bracker. 1988. Structure of maize protein bodies and immunocytochemical localization of zeins. Protoplasma 143:51–62.

    Article  CAS  Google Scholar 

  • Lycett, G. W., R. D. Cory, A. H. Shirsat, D. M. Richards, and D. Boulter. 1985. The 5′-flanking regions of three pea legumin genes: Comparison of DNA sequences. Nucleic Acids Res. 13:6733–6743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marqusee, S., and R. Baldwin. 1987. Helix stabilization by GLU-LYS salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. (USA) 84:8898–8902.

    Article  CAS  Google Scholar 

  • Marries, C., P. Gallois, J. Copley, and M. Keris. 1988. The 5′-flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants. Plant Mol. Biol. 10:359–366.

    Article  Google Scholar 

  • Mutter, M. 1988. Nature’s rules and chemist’s tools: A way for creating novel proteins. Trends Biochem. Sci. 13:260–264.

    Article  CAS  PubMed  Google Scholar 

  • Neurath, H. 1989. Proteolytic processing and physiological regulation. Trends Biochem. Sci. 14:268–271.

    Article  CAS  PubMed  Google Scholar 

  • Okamuro, J. K., K. D. Jofuku, and R. B. Goldberg. 1986. Soybean seed lectin gene and flanking nonseed protein genes are developmentally regulated in transformed tobacco plants. Proc. Natl. Acad. Sci. (USA) 83:8240–8244.

    Article  CAS  Google Scholar 

  • Pace, C. N., and A. J. Barret. 1984. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1. Biochem. J. 219:411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakula, A. A. and R. T. Sauer. 1986. Bacteriophage 1 Cro mutation: Effect on activity and intracellular degradation. Proc. Natl. Acad. Sci. (USA) 82:8829–8833.

    Article  Google Scholar 

  • Pakula, A. A., and R. T. Sauer. 1989. Amino acid substitutions that increase the thermal stability of the I Cro protein. Proteins 5:202–210.

    Article  CAS  PubMed  Google Scholar 

  • Parasell, D. A., and R. T. Sauer. 1989. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J. Biol.Chem. 264:7590–7595.

    Google Scholar 

  • Pederson, K., P. Agros, S. V. L. Naravana, and B. A. Larkins. 1986. Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of Mw 15,000. J. Biol. Chem. 201:6279–6284.

    Google Scholar 

  • Pernollet, J. C., and J. Mosse. 1983. Structure and location of legume and cereal seed storage protein. Seed Proteins (Phytochem. Soc. Europe Symp. Series) 20:155–187.

    CAS  Google Scholar 

  • Presnell, S. R., and F. E. Cohen. 1989. Topological distribution of a four-α-helix bundle. Proc. Natl. Acad. Sci. (USA) 86:6592–6596.

    Article  CAS  Google Scholar 

  • Presta, L. G., and G. D. Rose. 1988. Helix signals in proteins. Science 240:1632–1641.

    Article  CAS  PubMed  Google Scholar 

  • Rafalski, J. A., K. Scheets, M. Metzler, and D. M. Peterson. 1984. Developmentally regulated plant genes: The nucleotide sequence of a wheat gliadin geonomic clone. EMBO J. 3:1409–1415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson, J. S., and D. C. Richardson. 1988. Amino acid preferences for specific locations at the ends of a-helices. Science 240:1648–1652.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, J. S., and D. C. Richardson. 1989. The de novo design of protein structures. Trends Biochem. Sci. 14:304–309.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, P. R., J. A. Winter, A. R. Barnason, and S. G. Rogers. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthetase promoters in transgenic plants. Nucleic Acids Res. 15:1543–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheraga, H. 1978. Use of random copolymers to determine helix-coil stability constants of the naturally occurring amino acids. Pure Appl. Chem. 50:315–324.

    Article  CAS  Google Scholar 

  • Scheraga, H.A. 1985. Effect of side chain-backbone electrostatic interaction on the stability of α-helices. Proc. Natl. Acad. Sci. (USA) 82:5585–5587.

    Article  CAS  Google Scholar 

  • Scott, R. J., and J. Draper. 1987. Transformation of carrot tissue derived from proembryogenic suspension cells: A useful model system for gene expression studies in plants. Plant Mol. Biol. 8:265–274.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta, G. C., N. A. Reichert, R. F. Baker, T. C. Hall, and J. D. Kemp. 1985. Developmentally regulated expression of the bean ß-phaseolin gene in tobacco seed. Proc. Natl. Acad. Sci. (USA) 82:3320–3324.

    Article  Google Scholar 

  • Shen, S.-H. 1984. Multiple joined genes prevent product degradation in E. coli.Proc. Natl. Acad. Sci. (USA) 81:4627–4631.

    Article  CAS  Google Scholar 

  • Shoemaker, K. R., P. S. Kim, E. J. York, J. M. Stewart, and R. L. Baldwin. 1987. Test of helix dipole model for stabilization of α-helices. Nature 326:563–566.

    Article  CAS  PubMed  Google Scholar 

  • Staswick, P. E. 1989. Preferential loss of an abundant storage protein from soybean pods during seed development. Plant Physiol. 90:1251–1255.

    Article  Google Scholar 

  • Stockhaus, J., P. Eckes, A. Blau, J. Schell, and L. Willmitzer. 1987. Organ-specific and dosage-dependent expression of a leaf/stem specific gene from potato after tagging and transfer into potato and tobacco plants. Nucleic Acids Res. 15:3479–3491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sueki, M., S. Lee, S. P. Power, J. B. Denton, Y. Konishi, and H. Scheraga. 1984. Helix-coil stability constants for the naturally occurring amino acids in water. Macromolecules 17:148–155.

    Article  CAS  Google Scholar 

  • Twell, D., and G. Ooms. 1987. The 5′-flanking DNA of a patatin gene directs tuber specific expression of a chimeric gene in potato. Plant Mol. Biol. 9:365–375.

    Article  CAS  Google Scholar 

  • Wallace, J. C., G. Galili, E. E. Kawata, R. E. Cuellar, M. A. Shotwell, and B. A. Larkins. 1988. Aggregation of lysine containing zeins into protein bodies in Xenopus oocytes. Science 240:662–664.

    Article  CAS  PubMed  Google Scholar 

  • Weiler, E. W., and J. Schroder. 1987. Hormone genes and crown gall disease. Trends Biochem. Sci. 12:271–275.

    Article  CAS  Google Scholar 

  • Wenzler, H. C., G. A. Mignery, L. M. Fisher, and W. D. Park. 1989. Analysis of a chimeric class I potatin-GUS gene in transgenic potato plants: High level expression of tubers and sucrose-inducible expression in cultured leaf and stem expiants. Plant Mol. Biol. 12:41–50.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M. S., N. O. Espinoza, J. H. Dodds, and J. M. Jaynes. 1989. Expression of a synthetic gene for improved protein quality in transformed potato plants. Plant Sci. 64:99–111.

    Article  CAS  Google Scholar 

  • Zimm, B. H., and J. R. Bragg. 1959. Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31:526–535.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Van Nostrand Reinhold

About this chapter

Cite this chapter

Kim, J., Cetiner, S., Jaynes, J.M. (1992). Enhancing the Nutritional Quality of Crop Plants: Design, Construction, and Expression of an Artificial Plant Storage Protein Gene. In: Bhatnagar, D., Cleveland, T.E. (eds) Molecular Approaches to Improving Food Quality and Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8070-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8070-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8072-6

  • Online ISBN: 978-1-4684-8070-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics