Enhancing the Nutritional Quality of Crop Plants: Design, Construction, and Expression of an Artificial Plant Storage Protein Gene

  • JaeHo Kim
  • Selim Cetiner
  • Jesse M. Jaynes


The composition of storage proteins, a major food reservoir for the developing seeds, determines the nutritional value of plants and grains that are used as foods for man and domestic animals. The amount of protein varies with genotype or cultivar, but in general, cereals contain 10% of the dry weight of the seed as protein, while in legumes, the protein content varies between 20% and 30% of the dry weight. In many seeds, storage proteins account for 50% or more of the total protein, and thus determine the protein quality of seeds. Each year the total world cereal harvest amounts to some 1700 million tons of grain (Keris et al. 1985). This harvest yields about 85 million tons of cereal storage proteins harvested each year and contributes about 55% of the total protein intake of humans.


Storage Protein Nutritional Quality Protein Body Seed Storage Protein Chloramphenicol Acetyl Transferase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agros, P., K. Pederson, D. Marks, and B. A. Larkins. 1982. A structural model for maize zein proteins. J. Biol. Chem. 257:9984–9990.Google Scholar
  2. Agros, P., S. V. L. Naravana, and N. C. Nielsen. 1985. Structural similarity between legumin and vicillin storage proteins from legumes. EMBO J. 4:1111–1117.Google Scholar
  3. Altenbach, S. B., K. W. Pederson, G. Meeker, L. C. Staraci, and S. S. M. Sun. 1989. Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. PlantMol. Biol. 13:513–522.Google Scholar
  4. Badley, R. A., D. Atkinson, H. Häuser, D. Oldani, J. P. Green, and J. M. Stubbs. 1975. The structure, physical and chemical properties of the soybean protein glycinin. Biochim. Biophys. Acta 412:214–228.Google Scholar
  5. Bartels, D., and R. D. Tompson. 1983. The characterization of cDNA clones coding for wheat storage proteins. Nucleic Acid Res. 11:2961–2977.CrossRefGoogle Scholar
  6. Beachy, R. N., Z. L. Chen, R. B. Horsch, S. G. Rogers, N. J. Hoffman, and R. T. Fraley. 1985. Accumulation and assembly of soybean ß-conglycinin in seeds of transformed petunia plants. EMBO J. 4:3047–3053.Google Scholar
  7. Bierzynski, A., P. S. Kim, and R. L. Baldwin. 1982. A salt bridge stabilizes the helix formed by isolated c-peptide of RNAse A. Proc. Natl. Acad. Sci. (USA) 79:2470–2474.CrossRefGoogle Scholar
  8. Blundell, T. L., S. J. Thornton, S. K. Burley, and G. A. Petsco. 1986. Atomic interactions. Science 234:1005–1009.CrossRefGoogle Scholar
  9. Bollini, R., and M. J. Chrispeels. 1978. Characterization and subcellular localization of vicillin and phyto-hemaglutinin, the two major reserve proteins of Phaseolus vulgaris. Planta 142:291–298.CrossRefGoogle Scholar
  10. Chen, Z. L., N. S. Pan, and R. N. Beachy. 1988. A DNA sequence element that confers seed-specific enhancement of a constitutive promoter. EMBO J. 7:297–302.Google Scholar
  11. Chen, Z. L., M. A. Schüler, and R. N. Beachy. 1986. Functional analysis of regulatory elements in a plant embryo-specific gene. Proc. Natl. Acad. Sci. (USA) 83:8560–8564.CrossRefGoogle Scholar
  12. Chou, P. Y., and G. D. Fasman. 1978. Prediction of the secondary structure of proteins from amino acid sequence. Adv. Enzymol. 47:45–148.Google Scholar
  13. Colot, V., L. S. Robert, T. A. Kavanagh, M. W. Beavan, and R. D. Tompson. 1987. Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J. 6:3559–3564.Google Scholar
  14. Creighton, T. E. 1984. Proteins. New York: Freeman.Google Scholar
  15. Crouch, M., K. Tenberge, N. E. Simone, and R. Ferl. 1983. Sequence of the 1.7K storage protein of Brassica napus. Mol. Appl. Genet. 2:273–283.Google Scholar
  16. Degrado, W. F., and J. D. Lear. 1985. Induction of peptide conformation at apolar/water interfaces. J. Am. Chem. Soc. 107:7684–7689.CrossRefGoogle Scholar
  17. Degrado, W. F., Z. R. Wasserman, and J. D. Lear. 1989. Protein design, a minimalist approach. Science 241:622–628.CrossRefGoogle Scholar
  18. Esen, E. 1986. Separation of alcohol-soluble proteins (zeins) from maize into three fractions by differential solubility. Plant Physiol. 80:623–627.CrossRefGoogle Scholar
  19. Fasman, G. 1989. Protein conformational prediction. Trends Biochem. Sci. 14:295–299.CrossRefGoogle Scholar
  20. Finley, D., and A. Varshavsky. 1985. The ubiquitin system: Functions and mechanisms. Trends Biochem. Sci. 10:343–346.CrossRefGoogle Scholar
  21. Forde, B. G., M. Kreis, M. S. Williamson, R. P. Fry, and J. Pywell. 1985. Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J. 4:9–15.Google Scholar
  22. Goldberg, A. L., and A. C. St. John. 1976. Intracellular protein degradation in mammalian and bacterial cells: part 2. Ann. Rev. Biochem. 45:747–803.CrossRefGoogle Scholar
  23. Greenwood, J. S., and M. J. Chrispeels. 1985. Correct targeting of the bean storage protein phaseolin in the seeds of transformed tobacco. Plant Physiol. 79:65–71.CrossRefGoogle Scholar
  24. Gross, D. S., and W. T. Garrard. 1987. Poising chromatin for transcription. Trends Biochem. 12:293–296.CrossRefGoogle Scholar
  25. Ho S. P., and W. F. Degrado. 1987. Design of a 4-helix bundle protein: Synthesis of peptides which self-associate into helical protein. J. Am. Chem. Soc. 109:6751–6758.CrossRefGoogle Scholar
  26. Hoffmann, L. E., D. D. Donaldson, and E. M. Herman. 1988. A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. Plant Mol. Biol. 11:717–729.CrossRefGoogle Scholar
  27. Hoffmann, L. E., D. D. Donaldson, R. Bookland, K. Rashka, and E. M. Herman. 1987. Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J. 6:3213–3221.Google Scholar
  28. Hol, W. G., and H. C. Sanders. 1981. Dipole of the α-helix and β-sheet: Their role in protein folding. Nature 294:532–536.CrossRefGoogle Scholar
  29. Jaynes, J. M., P. Nagpala, L. Destefano, T. Denny, C. Clark, and J.-H. Kim. 1992. Expression of a de novo designed peptide in transgenic tobacco plants confers enhanced resistance to Pseudomonas solanacearum infection. Submitted to Proc. Natl. Acad. Sci. (USA) Google Scholar
  30. Jaynes, J. M., M. S. Yang, N. O. Espinoza, and J. H. Dodds. 1986. Plant protein improvement by genetic engineering: Use of synthetic genes. Trends Biotechnol. 4:314–320.CrossRefGoogle Scholar
  31. Jones, J. D. G., and D. E. Gilbert. 1987. T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol.Gen. Genet. 207:478–485.CrossRefGoogle Scholar
  32. Kabsch, W., and C. Sander. 1983. How good are predictions of protein structure? FEBS Lett. 155:179–182.CrossRefGoogle Scholar
  33. Kane, J. F., and D. L. Hartley. 1988. Formation of recombinant protein inclusion bodies in Escherichia coli. Trends Biotechnol. 6:95–101.CrossRefGoogle Scholar
  34. Kasarda, D. D., T. W. Okita, J. E. Bernardin, P. A. Baecker, and C. C. Nimmo. 1984. DNA and amino acid sequences of alpha and gamma gliadins. Proc. Natl. Acad. Sci. (USA) 81:4712–4716.CrossRefGoogle Scholar
  35. Keris, M., P. R. Shewry, B. G. Forde, G. Forde, and J. Miflin. 1985. Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. Oxford Survey Plant Mol. Cell Biol. 2:253–317.Google Scholar
  36. Komoriya, A., and J. M. Chaiken. 1982. Sequence modeling using semisynthetic ribonuclease S. J. Biol. Chem. 257:2599–2604.Google Scholar
  37. Larkins, B. A. 1983. Genetic engineering of seed storage protein. In Genetic Engineering of Plants, ed. B. A. Larkins, pp. 93–120. New York: Plenum.Google Scholar
  38. Larkins, B. A., K. Pederson, M. D. Mark, and D. R. Wilson. 1984. The zein protein of maize endosperm. Trends Biochem. Sci. 9:306–308.CrossRefGoogle Scholar
  39. Lawrence, M. C., E. Suzuki, J. N. Varghes, P. C. Davis, A. Van Donkelaar, P. A. Tulloch, and P. M. Collman. 1990. The three-dimensional structure of the seed storage protein phaseolin at 3 À resolution. EMBO J. 9:9–15.Google Scholar
  40. Lear, J. D., Z. R. Wasserman, and W. F. Degrado. 1988. Synthetic amphiphilic peptide model for protein ion channels. Science 240:1177–1181.CrossRefGoogle Scholar
  41. Lending, C. R., A. Kriz, B. A. Larkins, and C. E. Bracker. 1988. Structure of maize protein bodies and immunocytochemical localization of zeins. Protoplasma 143:51–62.CrossRefGoogle Scholar
  42. Lycett, G. W., R. D. Cory, A. H. Shirsat, D. M. Richards, and D. Boulter. 1985. The 5′-flanking regions of three pea legumin genes: Comparison of DNA sequences. Nucleic Acids Res. 13:6733–6743.CrossRefGoogle Scholar
  43. Marqusee, S., and R. Baldwin. 1987. Helix stabilization by GLU-LYS salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. (USA) 84:8898–8902.CrossRefGoogle Scholar
  44. Marries, C., P. Gallois, J. Copley, and M. Keris. 1988. The 5′-flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants. Plant Mol. Biol. 10:359–366.CrossRefGoogle Scholar
  45. Mutter, M. 1988. Nature’s rules and chemist’s tools: A way for creating novel proteins. Trends Biochem. Sci. 13:260–264.CrossRefGoogle Scholar
  46. Neurath, H. 1989. Proteolytic processing and physiological regulation. Trends Biochem. Sci. 14:268–271.CrossRefGoogle Scholar
  47. Okamuro, J. K., K. D. Jofuku, and R. B. Goldberg. 1986. Soybean seed lectin gene and flanking nonseed protein genes are developmentally regulated in transformed tobacco plants. Proc. Natl. Acad. Sci. (USA) 83:8240–8244.CrossRefGoogle Scholar
  48. Pace, C. N., and A. J. Barret. 1984. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1. Biochem. J. 219:411–417.Google Scholar
  49. Pakula, A. A. and R. T. Sauer. 1986. Bacteriophage 1 Cro mutation: Effect on activity and intracellular degradation. Proc. Natl. Acad. Sci. (USA) 82:8829–8833.CrossRefGoogle Scholar
  50. Pakula, A. A., and R. T. Sauer. 1989. Amino acid substitutions that increase the thermal stability of the I Cro protein. Proteins 5:202–210.CrossRefGoogle Scholar
  51. Parasell, D. A., and R. T. Sauer. 1989. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J. Biol.Chem. 264:7590–7595.Google Scholar
  52. Pederson, K., P. Agros, S. V. L. Naravana, and B. A. Larkins. 1986. Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of Mw 15,000. J. Biol. Chem. 201:6279–6284.Google Scholar
  53. Pernollet, J. C., and J. Mosse. 1983. Structure and location of legume and cereal seed storage protein. Seed Proteins (Phytochem. Soc. Europe Symp. Series) 20:155–187.Google Scholar
  54. Presnell, S. R., and F. E. Cohen. 1989. Topological distribution of a four-α-helix bundle. Proc. Natl. Acad. Sci. (USA) 86:6592–6596.CrossRefGoogle Scholar
  55. Presta, L. G., and G. D. Rose. 1988. Helix signals in proteins. Science 240:1632–1641.CrossRefGoogle Scholar
  56. Rafalski, J. A., K. Scheets, M. Metzler, and D. M. Peterson. 1984. Developmentally regulated plant genes: The nucleotide sequence of a wheat gliadin geonomic clone. EMBO J. 3:1409–1415.Google Scholar
  57. Richardson, J. S., and D. C. Richardson. 1988. Amino acid preferences for specific locations at the ends of a-helices. Science 240:1648–1652.CrossRefGoogle Scholar
  58. Richardson, J. S., and D. C. Richardson. 1989. The de novo design of protein structures. Trends Biochem. Sci. 14:304–309.CrossRefGoogle Scholar
  59. Sanders, P. R., J. A. Winter, A. R. Barnason, and S. G. Rogers. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthetase promoters in transgenic plants. Nucleic Acids Res. 15:1543–1558.CrossRefGoogle Scholar
  60. Scheraga, H. 1978. Use of random copolymers to determine helix-coil stability constants of the naturally occurring amino acids. Pure Appl. Chem. 50:315–324.CrossRefGoogle Scholar
  61. Scheraga, H.A. 1985. Effect of side chain-backbone electrostatic interaction on the stability of α-helices. Proc. Natl. Acad. Sci. (USA) 82:5585–5587.CrossRefGoogle Scholar
  62. Scott, R. J., and J. Draper. 1987. Transformation of carrot tissue derived from proembryogenic suspension cells: A useful model system for gene expression studies in plants. Plant Mol. Biol. 8:265–274.CrossRefGoogle Scholar
  63. Sengupta, G. C., N. A. Reichert, R. F. Baker, T. C. Hall, and J. D. Kemp. 1985. Developmentally regulated expression of the bean ß-phaseolin gene in tobacco seed. Proc. Natl. Acad. Sci. (USA) 82:3320–3324.CrossRefGoogle Scholar
  64. Shen, S.-H. 1984. Multiple joined genes prevent product degradation in E. coli.Proc. Natl. Acad. Sci. (USA) 81:4627–4631.CrossRefGoogle Scholar
  65. Shoemaker, K. R., P. S. Kim, E. J. York, J. M. Stewart, and R. L. Baldwin. 1987. Test of helix dipole model for stabilization of α-helices. Nature 326:563–566.CrossRefGoogle Scholar
  66. Staswick, P. E. 1989. Preferential loss of an abundant storage protein from soybean pods during seed development. Plant Physiol. 90:1251–1255.CrossRefGoogle Scholar
  67. Stockhaus, J., P. Eckes, A. Blau, J. Schell, and L. Willmitzer. 1987. Organ-specific and dosage-dependent expression of a leaf/stem specific gene from potato after tagging and transfer into potato and tobacco plants. Nucleic Acids Res. 15:3479–3491.CrossRefGoogle Scholar
  68. Sueki, M., S. Lee, S. P. Power, J. B. Denton, Y. Konishi, and H. Scheraga. 1984. Helix-coil stability constants for the naturally occurring amino acids in water. Macromolecules 17:148–155.CrossRefGoogle Scholar
  69. Twell, D., and G. Ooms. 1987. The 5′-flanking DNA of a patatin gene directs tuber specific expression of a chimeric gene in potato. Plant Mol. Biol. 9:365–375.CrossRefGoogle Scholar
  70. Wallace, J. C., G. Galili, E. E. Kawata, R. E. Cuellar, M. A. Shotwell, and B. A. Larkins. 1988. Aggregation of lysine containing zeins into protein bodies in Xenopus oocytes. Science 240:662–664.CrossRefGoogle Scholar
  71. Weiler, E. W., and J. Schroder. 1987. Hormone genes and crown gall disease. Trends Biochem. Sci. 12:271–275.CrossRefGoogle Scholar
  72. Wenzler, H. C., G. A. Mignery, L. M. Fisher, and W. D. Park. 1989. Analysis of a chimeric class I potatin-GUS gene in transgenic potato plants: High level expression of tubers and sucrose-inducible expression in cultured leaf and stem expiants. Plant Mol. Biol. 12:41–50.CrossRefGoogle Scholar
  73. Yang, M. S., N. O. Espinoza, J. H. Dodds, and J. M. Jaynes. 1989. Expression of a synthetic gene for improved protein quality in transformed potato plants. Plant Sci. 64:99–111.CrossRefGoogle Scholar
  74. Zimm, B. H., and J. R. Bragg. 1959. Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31:526–535.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • JaeHo Kim
  • Selim Cetiner
  • Jesse M. Jaynes

There are no affiliations available

Personalised recommendations