Advertisement

Characterization and Sequence Determination of Locust Brain cDNA Clones Selected by Antisera Raised Against Vertebrate Peptide Hormones

  • J. Vanden Broeck
  • H. Smet
  • E. Fias
  • A. De Loof
Part of the Chromatographic Society Symposium Series book series (CSSS)

Summary

By means of immunocytochemical studies, performed with antisera directed against known (vertebrate) peptide hormones, numerous immunopositive substances have been detected within insect nervous tissue and gut endocrine cells. The isolation and characterization of these immunoreactive substances, however, may become a very laborious task. Therefore, an alternative and complementary approach was tried. A locust (Locusta migratoria) brain cDNA expression library was constructed. This recombinant DNA approach enabled the use of antisera as probes for the selection of specific nucleic acid sequences. In this study bovine growth hormone- (bGH-) and melanotropin- (MSH-), as well as hypertrehalosemic factor- (HTF- from Carausius morosus) and caudo-dorsal cell hormone- (CDCH- from Lymnea stagnaliss) immunopositive plaques have been isolated, purified and amplified. These phage clones were then further analyzed. The sequence of cDNA inserts has been determined.

This immunological screening approach, combined with hybridization analysis of the isolated clones, can lead to the characterization of nucleic acid sequences coding for insect tissue immuno-reactive substances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Duve and A. Thorpe, Immunofluorescent localization of insulin-like material in the median neurosecretory cells of the blowfly Calliphora vomitoria (Diptera), Cell Tissue Res., 200:187–191 (1979).CrossRefGoogle Scholar
  2. 2.
    T. Fujita, R. Yui, T. Iwanaga, J. Nishiitsutsuji-Uwo, Y. Endo and N. Yanachara, Evolutionary aspects of “Brain-gut peptides”: an immunohistochemical study, Peptides, 2:123–131 (1981).CrossRefGoogle Scholar
  3. 3.
    B. L. Hansen, G. N. Hansen and B. Scharrer, Immunoreactive material resembling vertebrate neuropeptides in the corpus cardiacum and corpus allatum of the insect Leucophaeamaderae, Cell Tissue Res., 225:319–329 (1982).Google Scholar
  4. 4.
    C. Rémy, Parentés immunochimiques entre produits de neurosécrétion d’Invertébrés et neuropeptides de Vertébrés, J. Physiol., Paris, 78:514–522 (1982).Google Scholar
  5. 5.
    M. El-Salhy, S. Falkmer, K. J. Kramer and R. D. Speirs, Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca and corpora aliata of an adult lepidopteran insect Manduca sexta, Cell Tissue Res., 232:295–317 (1983).CrossRefPubMedGoogle Scholar
  6. 6.
    K. J. Kramer, Vertebrate hormones in insects, in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds., Pergamon Press, Oxford, 7:Endocrinology 1:511–536 (1985).Google Scholar
  7. 7.
    P. Verhaert, R. Huybrechts, D. Schols, J. Vanden Broeck, A. De Loof and F. Vandesande, Characterization of vertebrate peptide hormone-like materials in the American cockroach.Different methods employed to investigate these substances, in: “Progress in Insect Neurochemistry and Neurophysiology”, A. B. Borkovec and D. B. Gelman, eds., The Humana Press, pp 229–233 (1986).Google Scholar
  8. 8.
    A. De Loof, The impact of the discovery of vertebrate-type steroids and peptide hormone-like substances in insects, Entomol. Exp. Appl., 45:105–113 (1987).CrossRefGoogle Scholar
  9. 9.
    J. A. Veenstra, Immunocytochemical demonstration of vertebrate peptides in invertebrates: the homology concept, Neuropeptides, 12:49–54 (1988).CrossRefPubMedGoogle Scholar
  10. 10.
    D. Grube and E. Weber, Immunoreactivities of gastrin (G) cells.Dilution-dependent staining of G-cells by antisera and non-immune sera, Histochem., 65:223–237 (1980).CrossRefGoogle Scholar
  11. 11.
    E. A. Nigg, G. Walter and S. J. Singer, On the nature of crossreactions observed with antibodies to defined epitopes, Proc. Nat. Acad. Sci. USA, 79:5939–5943 (1982).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    P. Verhaert, C. P. J. Grimmelikhuijzen, and A. De Loof, Distinct localization of FMRFamide- and bovine pancreatic polypeptide-like material in the brain, retrocerebral complex and suboesophageal ganglion of the cockroach Periplaneta americana L., Brain Res., 348:331–338 (1985).CrossRefGoogle Scholar
  13. 13.
    F. Berkenbosch and F. J. H. Tilders, A quantitative approach to crossreaction problems in immunocytochemistry, Neuroscience, 23:823–826 (1987).CrossRefPubMedGoogle Scholar
  14. 14.
    B. D. Young and R. W. Davis, Efficient isolation of genes by using antibody probes, Proc. Nat Acad. Sci. USA, 80:1194–1198 (1983).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    F. Vandesande and K. Dierickx, Immunocytochemical demonstration of separate vasotocinergic and mesotocinergic neurons in the amphibian hypothalamic magnocellular neurosecretory system, Cell Tissue Res., 175:289–296 (1976).CrossRefPubMedGoogle Scholar
  16. 16.
    J. E. Arrand, “Nucleic Acids Hybridization — A Practical Approach”, B. D. Hames and S. J. Higgins, eds., IRL Press (1985).Google Scholar
  17. 17.
    H. Aviv and P. Leder, Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose, Proc. Nat. Acad. Sci. USA, 69:1408(1972).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    U. Gubler and B. J. Hoffman, A simple and very efficient method for generating cDNA libraries, Gene, 25:263–269 (1983).CrossRefPubMedGoogle Scholar
  19. 19.
    T. V. Huynh, R. A. Young and R. W. Davis, “DNA Cloning Volume I — A Practical Approach”, D. M. Glover, ed., IRL Press (1985).Google Scholar
  20. 20.
    T. Maniatis, E. F. Fritsch and J. Sambrook, “Molecular Cloning — A Laboratory Manual”, Cold Spring Harbor Laboratory (CSH) (1982).Google Scholar
  21. 21.
    F. Sanger, A. R. Coulson, B. G. Barrell, A. J. H. Smith and B. A. Roe, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol., 143:161–178(1980).CrossRefPubMedGoogle Scholar
  22. 22.
    A. B. Smit, E. Vreugdenhil, R. H. M. Ebberink, W. P. M. Geraerts, J. Klootwijk and J. Joosse, Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide, Nature, 331:535–538 (1988).CrossRefPubMedGoogle Scholar
  23. 23.
    L. E. Schneider and P. H. Taghert, Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to FMRFamide, Proc. Nat. Acad. Sci. USA, 85:1993–1997 (1988).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Vanden Broeck
    • 1
  • H. Smet
    • 1
  • E. Fias
    • 1
  • A. De Loof
    • 1
  1. 1.Zoological Institute of the UniversityLeuvenBelgium

Personalised recommendations