Advertisement

Isolation and Identification of a Sulfakinin-Like Peptide, with Sequence Homology to Vertebrate Gastrin and Cholecystokinin, from the Brain of Locusta Migratoria

  • L. Schoofs
  • M. Holman
  • T. Hayes
  • A. De Loof
Part of the Chromatographic Society Symposium Series book series (CSSS)

Summary

A neuropeptide (pGlu-Leu-Ala-Ser-Asp-Asp-Tyr-Gly-His-Met-Arg-Phe-NH2) with a blocked N-terminus and related to leucosulfakinins I and II from the Madeira roach has been isolated from an extract of 9000 brain complexes of Locusta migratoria. The peptide stimulates the motility of the cockroach hindgut. Biological activity was monitored during purification by high performance liquid chromatography by observing the myotropic effect of column fractions on the isolated hindgut of Leucophaea moderne.

The peptide, designated as locustasulfakinin or Lom-SK shares a common C-terminal decapeptide fragment with leucosulfakinin II and a common heptapeptide fragment with leucosulfakinin I, indicating the importance of the constituent amino acids for biological activity. Locust asulfakinin is the third invertebrate neuropeptide which exhibits sequence homologies with the hormonally active fraction of the vertebrate hormones cholecystokinin, human gastrin II and caerulin. Its intestinal myotropic activity is analogous to that of gastrin and cholecystokinin. The sequence homologies as well as the analogous myotropic activities suggest that gastrin/cholecystokinin-like peptides have a long evolutionary history, and probably play an important role in physiology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. De Loof, The impact of the discovery of vertebrate-type steroids and peptide hormone-like substances in insects, Entomol. Exp. Appl., 45:105–113 (1987).CrossRefGoogle Scholar
  2. 2.
    L. Schoofs, S. Jègou, H. Vaudry, P. Verhaert and A. De Loof, Localization of melanotropin resembling peptides in the central nervous system of two insect species, the migratory locust Locusta migratoria and the fleshfly, Sarcophaga bullata, Cell Tissue Res., 248:25–31 (1987).CrossRefGoogle Scholar
  3. 3.
    R. J. Nachman, G. M. Holman, W. F. Haddon and N. Ling, Leucosulfakinin, a sulfated insect neuropeptide with homology to cholecystokinin and gastrin, Science, 234:71–73 (1986).CrossRefGoogle Scholar
  4. 4.
    R. J. Nachman, G. M. Holman, B. J. Cook, W. F. Haddon and N. Ling, Leucosulfakinin II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin, Biochem. Biophys. Res. Comm., 140:357–364 (1986).CrossRefGoogle Scholar
  5. 5.
    G. J. Ashby, Locusts, in: “The UFAW Handbook on the Care and Management of Laboratory Animals”, UFAW, ed., Churchill Livingstone, Edinburgh, London, pp 582–587 (1972).Google Scholar
  6. 6.
    B. J. Cook and G. M. Holman, Comparative pharmacological properties of muscle functions in the foregut and the hindgut of the cockroach, Leucophaea maderae, Comp. Biochem. Physiol., 61C:291–295 (1978).Google Scholar
  7. 7.
    G. M. Holman, B. J. Cook and R. J. Nachman, Isolation, primary structure and synthesis of two neuropeptides from Leucophaea maderae: members of a new family of cephalomyotropins, Comp. Biochem. Physiol., 84C:205–211 (1986).Google Scholar
  8. 8.
    H. Gregory, P. M. Hardy, D. S. Jones, G. W. Kenner and R. C. Sheppard, The antral hormone gastrin, Nature, 204:931–933 (1964).CrossRefGoogle Scholar
  9. 9.
    R. Nichols, A. Stephen, A. Schneuwly and J. E. Dixon, Identification of a Drosophila homologue to the vertebrate neuropeptide, cholecystokinin, J. Biolog. Chem., 263:12167–12170(1988).Google Scholar
  10. 10.
    D. A. Price and M. J. Greenberg, Structure of a molluscan cardioexitatory neuropeptide, Science, 189:670–671 (1977).CrossRefGoogle Scholar
  11. 11.
    G. J. Dockray, H. Duve and A. Thorpe, Immunochemical characterization of gastrin/cholecystokinin-like peptides in the brain of the blowfly, Calliphora vomitoria, Gen. Comp. Endocrinol, 45:491–496 (1981).CrossRefGoogle Scholar
  12. 12.
    L. I. Larsson and J. F. Rehfeld, Evidence for a common evolutionary origin of gastrin and cholecystokinin, Nature, 269:335–338 (1977).CrossRefGoogle Scholar
  13. 13.
    N. Dhainaut-Courtois, G. Tramu, R. Marcel, J. Malecha, M. Vergerbocquet, J. C. Andriès, H. Massom, L. Selboum, G. Belemtougri and J. C. Beauvillain, Cholecystokinin in the nervous system of invertebrates and protochordates. Immunohistochemical localization of a cholecystokinin-8-like substance in annelids and insects, Ann. New York Acad. Sci., 448:167–187 (1985).CrossRefGoogle Scholar
  14. 14.
    M. K. S. Gustafsson, M. A. I. Lehtonen and F. Sundler, Immunocytochemical evidence for the presence of mamalian neurohormonal peptides in neurones of the tapeworm, Diphyllobothrium dendriticum, Cell Tissue Res., 243:41–49 (1986).CrossRefGoogle Scholar
  15. 15.
    G. N. Hansen, B. L. Hansen and B. Scharrer, Gastrin/CCK-like immunoreactivity in the corpora cardiaca-corpora aliata complex of the cockroach Leucophaea maderae, Ceil Tissue Res., 248:595–598 (1987).CrossRefGoogle Scholar
  16. 16.
    M. Tamarelle, M. Romoeuf and J. J. Vanderhaeghen, Immunohistochemical localization of gastrin/CCK-like molecules in the central nervous system of the migratory locust, Histochemistry, 89:201–207 (1988).CrossRefGoogle Scholar
  17. 17.
    H. Duve and A. Thorpe, Immunocytochemical mapping of gastrin/CCK-like peptides in the neuroendocrine system of the blowfly, Calliphora vomitoria (Diptera), Cell Tissue Res., 237:309–320 (1984).CrossRefGoogle Scholar
  18. 18.
    M. El-Salhy, R. Abou-El-Ela, S. Falkmer, L. Grimelius and E. Wilander, Immunohistochemical evidence of gastro-entero-pancreatic neurohormonal peptides of vertebrate-type in the nervous system of larva of a dipteran insect, the hoverfly, Eristalis aeneus, Reg. Peptides, 1:187–204 (1980).CrossRefGoogle Scholar
  19. 19.
    H. Duve and A. Thorpe, Gastrin/cholecystokinin (CCK)-like immunoreactive neurones in the brain of the blowfly, Calliphora erythrocephala (Diptera), Gen. Comp. Endocrinol, 43:381–391 (1981).CrossRefGoogle Scholar
  20. 20.
    J. C. Andriès and G. Tramu, Distribution patterns of mammalian-like peptide immunoreactive cells in the midgut of Aeschna cyanea (Insecta, Odonata), Experientia, 41:500–503 (1985).CrossRefGoogle Scholar
  21. 21.
    J. C. Andriès and G. Tramu, Ultrastructural and immunohistochemical study of endocrine cells in the midgut of the cockroach Blaberus craniifer (Insecta, Dictyoptera), Cell Tissue Res., 240:323–332 (1985).CrossRefGoogle Scholar
  22. 22.
    J. C. Andriès and J. C. Beauvillain, Ultrastructural study of cholecystokinin-like immunoreactivity in endocrine cells of the insect midgut, Cell Tissue Res., 254:75–81 (1988).CrossRefGoogle Scholar
  23. 23.
    C. J. P. Grimmelikhuijzen, J. F. Sundler and Rehfeld, Gastrin/CCK-like immunoreactivity in the vervous system of coelenterates, Histochem., 69:61–68 (1980).CrossRefGoogle Scholar
  24. 24.
    B. A. Larson and S. R. Vigna, Species and tissues distribution of cholecy-stokinin/gastrin-like substances in some invertebrates, Gen. Comp. Endocrin., 50:469–475 (1983).CrossRefGoogle Scholar
  25. 25.
    R. P. Engelhardt, N. Dhainaut-Courtois and G. Tramu, Immunohistochemical demonstration for a cholecystokinin-like peptide in the nervous system of a marine annelid worm, Nereis diversicolor O.F. Muller, Cell Tiss. Res., 227:401–411 (1982).CrossRefGoogle Scholar
  26. 26.
    R. Rzara, K. V. Kaloustian and E. K. Prokop, Immunochemical evidence for a gastrin-like peptide in the intestinal tissues of the earthworm Lumbricus terrestris, Com. Biochem. Physiol A, 71:631–634 (1982).CrossRefGoogle Scholar
  27. 27.
    E. Straus, R. S. Yalow and H. Gaines, Molluscan gastrin: concentration and molecular forms, Science, 190:687–689 (1975).CrossRefGoogle Scholar
  28. 28.
    N. N. Osborne, A. C. Cuello and G. J. Dockray, Substance P and cholecystokinin-like peptides in Helix neurons and cholecystokinin and serotonin in a giant neuron, Science, 216:409–410.CrossRefGoogle Scholar
  29. 29.
    B. P. Gesser and L. I. Larsson, Localisation of alpha-MSH-, endorphin- and gastrin/CCK-like immunoreactivities in the nervous system of invertebrates, in: “Integrated Neuronal Mechanisms”, L. Angelucci, E. deWied and E. Endröczi and U. Scapagnini (eds), Elsevier Biomedical Press, Amsterdam (1983).Google Scholar
  30. 30.
    L. P. C. Scot, H. H. Boer, D. F. Swaab and S. Van Noorden, Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail Lymneaa stagnalis, with antisera raised to biologically active peptides of vertebrates, Cell Tiss. Res., 216:273–291 (1981).CrossRefGoogle Scholar
  31. 31.
    B. A. Larson and S. R. Vigna, Gastrin-cholecystokinin-like immunoreactive peptides in the Dungness crab, Cancer magister (Dana), Immunochemical and biological characterization, Regulatory Peptides, 7:155–170 (1983b).CrossRefGoogle Scholar
  32. 32.
    J. A. Veenstra, H. M. Romber-Privee, H. Schooneveld and J. M. Polak, Immunocytochemical localisation of peptidergic neurones and neurosecretory cells in the neuro-endocrine system of the colorado potato beetle with antisera to vertebrate regulatory peptides, Histochemistry, 82:9–18 (1985).CrossRefGoogle Scholar
  33. 33.
    K. J. Kramer, R. D. Speirs and C. N. Childs, Immunochemical evidence for a gastrin-like peptide in insect neuroendocrine systems, Gen. Comp. Endrocrin., 32:423–426 (1977).CrossRefGoogle Scholar
  34. 34.
    M. El-Salhy, S. Falkmer, K. J. Kramer and R. D. Speirs, Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, corpora aliata of an adult lepidopteran insect Manduca sexta L. Cell Tiss. Res., 232:295–317 (1983).CrossRefGoogle Scholar
  35. 35.
    R. Yui, R. I. Fujita and S. Ito, Insulin-, gastrin-, pancreatic polypeptide-like neurons in the brain of the silkworm, Bombyx mori Biomed. Res., 1:41–46 (1980).Google Scholar
  36. 36.
    R. Cantera, Serotonin and gastrin/cholecystokinin-like immunoreactive neurons in the larval retrocerebral complex of the blowfly Calliphora erythrocephala, Cell Tiss. Res., 253:425–433 (1988).CrossRefGoogle Scholar
  37. 37.
    M. C. Thorndyke, Cholecystokinin (CCK)/gastrin-like immunoreactive neurons in the cerebral ganglion of the protochordate ascidians, Styela clava and Asciedella aspersa, Regulatory Peptides, 3: 281–288 (1982).CrossRefGoogle Scholar
  38. 38.
    H. A. R. Fritsch, S. Van Noorden and A. G. E. Pearse, Localisation of somatostatin and gastrin-like immunoreactivity in the gastrointestinal tract of Ciona intestinalis L. Cell Tiss. Res., 186:181–185(1978).CrossRefGoogle Scholar
  39. 39.
    M. Pestarino, J. C. Garaud and F. Ravera, Localization of immunoreactive gastrin-like cells in the alimentary tract of the ascidian, Styela plicata, Gen. Comp. Endrocrin., 69:13–18(1980).CrossRefGoogle Scholar
  40. 40.
    S. Van Noorden and A. G. E. Pearse, The localization of immunoreactivity to insulin, glucagon and gastrin in the gut of Amphioxus (Branchiostomata) lanceolatus, in: “The Evolution of Pancreatic Islets, T.A.I. Grillo, L. Leibson and A. Epple (eds), pp. 163–178, Pergamon, Oxford (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • L. Schoofs
    • 1
  • M. Holman
    • 2
  • T. Hayes
    • 3
  • A. De Loof
    • 2
  1. 1.Zoological Institute of the UniversityLeuvenBelgium
  2. 2.Veterinary Toxicology and Entomology Research Laboratory, Agricultural Research ServiceUS Department of AgricultureCollege StationUSA
  3. 3.Laboratories for Invertebrate Neuroendocrine Research, Department of EntomologyTexas A & M UniversityCollege StationUSA

Personalised recommendations