Advertisement

Isolation and Characterization of a Diuretic Peptide, AP-I, from the Corpora Cardiaca of the House Cricket, Acheta Domesticus

  • G. M. Coast
  • C. H. Wheeler
  • N. F. Totty
  • R. J. Philp
  • G. J. Goldsworthy
Part of the Chromatographic Society Symposium Series book series (CSSS)

Summary

Fractionation of extracts of the corpora cardiaca of the house cricket, Acheta domesticus, by reversed-phase high performance liquid chromatography (RP-HPLC) on octylsilica column packings, revealed a number of peptides which had diuretic activity. One of these peptides, AP-I, was associated with a major peak of UV absorbance. AP-I has been isolated using RP-HPLC, and the purity confirmed using a range of chromatographic procedures including: elution in different solvent systems; the use of octadecyl and phenyl columns; and separation on size-exclusion and ion-exchange columns. In all instances diuretic activity was associated with a peak of UV absorbance corresponding to AP-I. After treatment with pyroglutamate aminopeptidase, AP-I was sequenced by gas-phase Edman-degradation, and determined as <QRDIFHAQTDIFQVPK-OH. This sequence has been confirmed by peptide mapping, and the proposed molecular weight of 1924.98 conforms with that obtained by fast atom bombardment mass-spectrometry (FAB-MS). A peptide with this sequence has been synthesized using FMOC chemistry, and its molecular weight confirmed by FAB-MS. The synthetic peptide co-elutes with AP-I on a Lichrosorb RP8 column, but it does not stimulate fluid secretion in Acheta. Possible reasons for this lack of activity are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Mordue and P. J. Morgan, Chemistry of peptide hormones, in:“Comprehensive Insect Physiology, Biochemistry and Pharmacology”, G. A. Kerkut and L. I. Gilbert, eds., Pergamon Press, Oxford, Vol. 7, pp 153–183 (1985).Google Scholar
  2. 2.
    R. J. Aston and L. Hughes, Diuretic hormone-extraction and chemical properties, in:“Neurohormonal Techniques in Insects”, T. A. Miller, ed., Springer, Berlin, pp 91–115(1980).CrossRefGoogle Scholar
  3. 3.
    J. E. Phillips, Endocrine control of salt and water balance: excretion, in:“Endocrinology of Insects”, R. G. H. Downer and H. Laufer, Alan Liss, New York, pp 411–425(1983).Google Scholar
  4. 4.
    J. P. Proux, C. Miller, J. P. Li, R. L. Carney, A. Girardie, M. Delaage and D. A. Schooley, Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria, Biochem. Biophys. Res. Commun., 149:180–186 (1987).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    H. Kataoka, R. G. Troetschler, J. P. Li, S. J. Kramer, R. L. Carney and D. A. Schooley, Isolation and identification of a diuretic hormone from the tobacco hornworm, Manduca sexta, Proc. Nat. Acad. Sci., USA, 86:2976–2980 (1989).CrossRefGoogle Scholar
  6. 6.
    J. A. Ramsay, Active transport of water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera; Phasmidae), J. Exp. Biol, 31:104–113 (1954).Google Scholar
  7. 7.
    C. H. Wheeler and G. M. Coast, Assay and characterization of diuretic factors in insects, J. Insect Physiol, in press (1989).Google Scholar
  8. 8.
    D. A. Schooley, C. A. Miller and J. P. Proux, Isolation of two arginine-vasopressin-like factors from ganglia of Locusta migratoria, Arch. Insect Biochem. Physiol., 5:157–166(1987).CrossRefGoogle Scholar
  9. 9.
    J. Proux, G. Rougon and A. Cuppo, Enhancement of excretion across locust Malpighian tubules by a diuretic vasopressin-like hormone, Gen. Comp. Endocrinol, 47:449–457(1982).CrossRefPubMedGoogle Scholar
  10. 10.
    P. J. Morgan, K. J. Siegert and W. Mordue, Preliminary characterization of locust diuretic peptide (DP-I) and another corpus cardiacum peptide (LCCP), Insect Biochem., 17:383–388 (1987).CrossRefGoogle Scholar
  11. 11.
    G. M. Coast, Fluid secretion by single isolated Malpighian tubules of the house cricket, Acheta domesticus, and their response to diuretic hormone, Physiol. Entomol., 13:381–391 (1988).CrossRefGoogle Scholar
  12. 12.
    G. M. Coast and C. H. Wheeler, The distribution and relative potency of diuretic peptides in the house cricket, Acheta domesticus, Physiol Entomol., in press (1989).Google Scholar
  13. 13.
    C. W. Clifford, R. M. Roe and J. P. Woodring, Rearing methods for obtaining house crickets, Acheta domesticus, of known age, sex and instar, Ann. Entomol Soc. America, 70:69–74 (1977).CrossRefGoogle Scholar
  14. 14.
    G. E. Tarr, Manual Edman sequencing system, in:“Methods of Protein Microcharacterization”, J. E. Shively, ed., Humana Press, New York, pp 155–194 (1986).CrossRefGoogle Scholar
  15. 15.
    D. Dupont, P. Keim, A. Chui, I. Harding and K. J. Wilson, Gas-phase hydrolysis for PTC-amino acid analysis, Derivatizer-Analyzer Bulletin No. 2, Applied Biosystems Inc. (1987).Google Scholar
  16. 16.
    P. J. Morgan and W. Mordue, Separation and characteristics of diuretic hormone from the corpus cardiacum of Locusta, Comp. Biochem. Physiol, 75B:75–80 (1983).Google Scholar
  17. 17.
    G. M. Coast, Stimulation of fluid secretion by single isolated Malpighian tubules of the house cricket. Acheta domesticus, Physiol Entomol., 14:21–30 (1989).CrossRefGoogle Scholar
  18. 18.
    A. Rafaeli, S. W. Applebaum and P. Moshitzky, An ACTH-like diuretic hormone in locusts, in:“Insect Neurochemistry and Neurophysiology 1986”, A. B. Borkovec and D. B. Gelman, eds., Humana Press, New York, pp 355–357 (1986).CrossRefGoogle Scholar
  19. 19.
    G. L. Goldsworthy, K. Mallisson, C. H. Wheeler and G. Gade, Relative adipokinetic activities of members of the adipokinetic hormone/red pigment concentrating hormone family. J. Insect Physiol., 32:433–438 (1986).CrossRefGoogle Scholar
  20. 20.
    J. P. Proux, M. Picquot, J.-P. Herault and B. Fournier, Diuretic activity of a newly identified neuropeptide — the arginine-vasopressin-like diuretic hormone: use of an improved bioassay, J. Insect Physiol., 34:919–927 (1988).CrossRefGoogle Scholar
  21. 21.
    P. Y. Chou and G. D. Fasman, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol, 47:45–148 (1978).PubMedGoogle Scholar
  22. 22.
    K. J. Siegelt and W. Mordue, Elucidation of the primary structures of the cockroach hyperglycaemic hormones I and II using enzymatic techniques and gas-phase sequencing, Physiol Entomol., 11:205–211 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • G. M. Coast
    • 1
  • C. H. Wheeler
    • 1
  • N. F. Totty
    • 2
  • R. J. Philp
    • 2
  • G. J. Goldsworthy
    • 1
  1. 1.Department of BiologyBirkbeck CollegeLondonUK
  2. 2.The Courtauld BuildingThe Ludwig Institute for Cancer ResearchLondon WC1UK

Personalised recommendations