Advertisement

Physical Mechanisms for Electromagnetic Interaction with Biological Systems

  • Paolo Bernardi
  • Guglielmo D’Inzeo

Abstract

The physical interaction mechanisms are the basic mechanisms that underlie and control the interaction of electromagnetic (EM) fields with biological systems (Fig. 1). Because of the corpuscular nature of matter, primary interaction occurs at the microscopic level through forces and couples the local EM field generates on the electrically charged particles (ions and electrons) and on the electric dipoles of molecules of the biological medium; forces and couples that, in turn, lead to dynamic, electrophysical, and electrochemical consequences.

Keywords

Static Magnetic Field Microwave Absorption Dissociation Rate Constant Transmembrane Voltage Nonlinear Electrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W.R., and Bawin, S.M., 1977, Brain interactions with weak electric and magnetic fields, Neurosci. Res. Prog. Bull., 15:7Google Scholar
  2. Adey, W. R., 1980, Frequency and power windowing in tissue interactions with weak electromagnetic fields, Proc. TEFF, 68: 119.Google Scholar
  3. Adey, W.R., 1981, Tissue interactions with nonionizing electromagnetic fields, Rhysiol. Rev., 61: 435.Google Scholar
  4. Adey, W.R., and Bawin, S.M., 1982, Binding and release of brain calcium by low level electromagnetic fields: a review, Radio. Sci., 17: 149.ADSCrossRefGoogle Scholar
  5. Adey, W.R., Bawin, S.M., and Lawrence, A.F., 1982, Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex, Bioelectromag., 3: 295.CrossRefGoogle Scholar
  6. Adey, W.R., 1984, Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes, In: “Nonlinear electrodynamics in biological systems,” W.R. Adey, and A.F. Lawrence, eds., Plenum Press, New York.CrossRefGoogle Scholar
  7. Adey, W.R., and Lawrence, A.F., 1984, “Nonlinear electrodynamics in biological systems,” Plenum Press, New York.CrossRefGoogle Scholar
  8. Albanese, R.A., and Bell, E.L., 1984, Radiofrequency radiation and chemical reaction dynamics, In: “Nonlinear electrodynamics in biological systems,” W.R. Adey, and A.F. Lawrence, eds., Plenum Press, New York.Google Scholar
  9. Arber, S.L., 1976, Effect of microwaves on resting potential of giant neurons of mollusk, Helix pomatia, Elektron, Obrab, Mater, 6: 78.ADSGoogle Scholar
  10. Arber, S.L., 1981, The effect of microwave radiation on passive membrane properties of snail neurons, J. Microwave Power, 16: 15.Google Scholar
  11. Arber, S.L., and Lin, J.C., 1983, Microwave enhancement of membrane conductance in snail neurons: role of temperature, Physiol. Chem. Phys., 15: 259.Google Scholar
  12. Arber, S.L., and Lin, J.C., 1984, Microwave enhancement of membrane conductance in snail neurons: effects of EDTA, Caffeine and tetracaine, Physiol. Chem. Phys., 16: 469.Google Scholar
  13. Arber, S.L., and Lin, J.C., 1985a, Microwave-induced changes in nerve cells: effects of modulation and temperature, Bioelectromag., 6: 257.CrossRefGoogle Scholar
  14. Arber, S.L., and Lin, J.C., 1985b, Extracellular calcium and microwave enhancement of membrane conductance in snail neuron, Eadiat. Environ., 24: 149.Google Scholar
  15. Athey, T.W., 1981, Comparison of RF-induced calcium efflux from chick brain at different frequencies: do the scaled power density windows align?, Bioelectromag., 2: 407.Google Scholar
  16. Baransky, S., and Czerski, P., 1976, “Biological effects of microwaves,” Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
  17. Barnes, F.S, and Hu, C.J., 1977, Model for some nonthermal effects of radio and microwave fields on biological membranes, IEEE Trans. MTT, 25: 742MathSciNetCrossRefGoogle Scholar
  18. Barsoum, Y.A., and Pickard, W.F., 1981, Radiofrequency bioeffects at the membrane level: separation of thermal and athermal contributions in the characeae, J. Membrane Biol., 61: 39.CrossRefGoogle Scholar
  19. Barsoum, Y.A., and Pickard, W.F., 1982, The vacuolar potential of characean cells exposed to electromagnetic radiation in the range 200–8200 MHz, Bioelectromag., 3: 393.CrossRefGoogle Scholar
  20. Bawin, S.M., Gavalas-Medici, R.J., and Adey, W.R., 1973, Effects of modulated very high frequency fields on specific brain rhythms in cats, Bran Res. 58: 365.CrossRefGoogle Scholar
  21. Bawin, S.M., Kaczmarek, K.L., and Adey, W.R., 1975, Effects of modulated VHF fields on the central nervous system, Ann. N.Y. Acad. Sci., 247: 74.ADSCrossRefGoogle Scholar
  22. Bawin, S.M., and Adey, W.R., 1976, Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequencies, Proc. Natl. Acad. Sci, U.S.A., 73: 1999.ADSCrossRefGoogle Scholar
  23. Bawin, S.M., and Adey, W.R., 1977, Calcium binding in cerebral tissues, In: “Biological effects and measurement of Radiofrequency Microwaves,” D.G. Hazzard, ed., HEW Publ., FDA.Google Scholar
  24. Bawin, S.M., Sheppard, A.R., and Adey, W.R., 1978, Possible mechanisms of weak electromagnetic field coupling in brain tissue, Bioelectrochem. Bioenerg., 5: 67.CrossRefGoogle Scholar
  25. Berkowitz, G.C., and Barnes, F.S., 1979, The effects of nonlinear membrane capacity on the interaction of microwave and radio frequencies with biological materials, IEEE Trans. MTT, 27: 204.CrossRefGoogle Scholar
  26. Bernardi, P., and D’Inzeo, G., 1984, A nonlinear analysis of the effects of transient electromagnetic fields on excitable membranes, IEEE Trans. MTT, 32: 670.CrossRefGoogle Scholar
  27. Bernardi, P., D’Inzeo, G., and Eusebi, F., 1985a, Response of a neuronal membrane to applied sinusoidal currents, Cell Biophysics, 7: 185.Google Scholar
  28. Bernardi, P., D’Inzeo, G., and Pisa, S., 1985b, Alteration of the firing frequency in neuronal membranes stimulated with sinusoidal currents, Proc. of the 7° IEEE/EMBS Conference, Chicago, 1: 74.Google Scholar
  29. Bernardi, P., D’Inzeo, G., and Pisa, S., 1986, Effects of modulated microwave and RF fields on the membrane of neuronal cells, Proc. of the 16th European Microwave Conference, 1: 581.CrossRefGoogle Scholar
  30. Blackman, C.F., Elder, J.A., Weil, C.M., Benane, S.G., Eichinger, D.C., and House, D.E., 1979, Induction of calcium ion efflux from brain tissue by radiofrequency radiation: effects of modulation, frequency and field strength, Radio Sci., 14 (6S): 93.ADSCrossRefGoogle Scholar
  31. Blackman, C.F., Benane, S.G., Elder, J.A., House, D.E., Lampe, J.A., and Faulk, J.M., 1980, Induction of calcium ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power density window, Bioelectromag., 1: 35.CrossRefGoogle Scholar
  32. Blackman, C.F., Benane, S.G., Rabinowitz, J.R., House, D.E., and Joines, W.T., 1985, A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro, Bioelectromaa., 6: 327.CrossRefGoogle Scholar
  33. Caddemi, A., Tamburello, C., Zanforlin, L., and Torregrossa, V., 1986, Microwave effects on isolated chick embryo hearts, Bioelectromaa., 7: 359.CrossRefGoogle Scholar
  34. Cain, C.A., 1980, A theoretical basis for microwave and RF field effects on excitable cellular membranes, IEEE Trans. MTT, 28: 142.CrossRefGoogle Scholar
  35. Cain, C.A., 1981, Biological effects of oscillating electric fields: role of voltage sensitive ion channels, Bioelectromag., 2: 23.CrossRefGoogle Scholar
  36. Campbell, N.L., and Brandt, C.L., 1981, Response of aplysia californica neurons to 2.45GHz, 3th Annual Meet. of Bioelectromag. Soc., (Abstr.), Washington.Google Scholar
  37. Casaleggio, A., Marconi, L., Morgavi, G., Ridella, S;, and Rolando, C., 1984, Evaluation of ionic fluxes in a cell with non linear membrane stimulated by an electric field, J. of Bioelectricity, 3 (1 & 2): 305.Google Scholar
  38. Chiabrera, A., Grattarola, M., and Viviani, R., 1984, Interaction between electromagnetic fields and cells: Microelectrophoretic effect on ligands and surface receptors, Bioelectromag., 5: 173.CrossRefGoogle Scholar
  39. Chiabrera, A., Nicolini, C., and Schwan, H.P., 1985a, “Interaction between electromagnetic fields and cells, ” Plenum Press, New York.Google Scholar
  40. Chiabrera, A., Bianco, B., Caratozzolo, F., Giannetti, G., Grattarola, M., and Viviani, R., 1985b, Electric and magnetic field effects on ligand binding to the cell membrane., In: “Interaction between electromagnetic fields and cells”, A. Chiabrera, C. Nicolini, and H.P. Schwan, eds., Plenum Press, New York.Google Scholar
  41. Chiabrera, A., Gyebyi, K., Kaufman, J., Ryaby, J., Smith Sonneborn, J., and Pilla, A.A., 1986, Lorentz magnetic force effect on biological systems: application to paramecium, Abstr., 6th Annual Meet. of BRAGS, Utrecht, The Netherlands.Google Scholar
  42. Chiabrera, A., and Bianco, B., 1987, The role of the magnetic field in the em interaction with ligand binding, la “ Mechanistic approaches to interaction of electromagnetic fields with living systems”, M. Blank, and E. Findl, eds., Plenum Press, New York.Google Scholar
  43. Collin, R.E., 1966, “Foundations for Microwave Engineering”, Mc Graw-Hill, New York.Google Scholar
  44. Connor, J.A., and Stevens, C.F., 1971, Inward and delayed outward membrane currents in isolated neural somata under voltage clamp, J. Physiol., 213: 1Google Scholar
  45. Davydov, A.S., 1979, Solitons in molecular systems, Phys. Scripta, 20: 387.ADSMATHMathSciNetCrossRefGoogle Scholar
  46. Dutta, S.K., Subramoniam, A., Ghosh, B., and Parshad, R., 1984, Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture, Bioelectromag., 5: 71.CrossRefGoogle Scholar
  47. Edwards, G.S., Davis, C.C., Saffer, J.D., and Swicord, M.L., 1984, Resonant microwave absorption of selected DNA molecules, Phys. Rev. Lett., 53: 1284ADSCrossRefGoogle Scholar
  48. Edwards, G.S., Davis, C.C., Saffer, J.D., and Swicord, M.L., 1985, Microwave-field-driven acoustic modes in DNA, Biophys. J., 47: 799.CrossRefGoogle Scholar
  49. Epstein, B.R., Gealt, M.A. Foster, K.R., 1987, The use of coaxial probes for precise dielectric measurements: a reevaluation, Froc. of the IEEE-MTT Symp., 2: 55.Google Scholar
  50. Foster, K. R., and Schwan, H. P., 1986, Dielectric properties of tissues, In: “CRC Handbook of Biological Effects of Electromagnetic Fields”, C. Polk, and E. Postow, eds., CRC Press, Boca Raton.Google Scholar
  51. Franceschetti, G., and Pinto, I., 1984, Cell membrane nonlinear response to applied electromagnetic field, IEEE Trans. MTT, 32: 653.CrossRefGoogle Scholar
  52. Frey, A.H., and Messenger, R., 1973, Human perception of illumination with pulsed ultra-high frequency electromagnetic energy, Science, 181: 356.ADSCrossRefGoogle Scholar
  53. Frohlich, H., 1968, Long-range coherence and energy storage in biological systems, Int.. J. Ouantum Chem., 2: 641.ADSCrossRefGoogle Scholar
  54. Frohlich, H., 1978, Coherent electric vibrations in biological systems and the cancer problem, IEEE Trans. MTT, 26: 216.CrossRefGoogle Scholar
  55. Frohlich, H., 1980, The biological effects of microwaves and related questions, Adv. in Electron. Electron Phys, 53:85.CrossRefGoogle Scholar
  56. Frohlich, H., 1984, General theory of coherent excitations in biological systems, In: “Nonlinear electrodynamics in biological systems,” W.R. Adey, and A.F. Lawrence, eds., Plenum Press, New York.Google Scholar
  57. Furia, L., Hill, D.W., and Gandhi, O.P., 1986, Effects of millimeter-wave irradiation on growth of saccharomyces cerevisiae, IEEE Trans. BME 33: 993.CrossRefGoogle Scholar
  58. Gabriel, C., Grant, E.H., Tata, R., Brown, P.R., Gestblom, B., and Norenland, E., 1987, Microwave absorption in aqueous solutions of DNA, Nature, 328: 145.ADSCrossRefGoogle Scholar
  59. Galvin, M.J., and McRee, D.I., 1986, Cardiovascular, hematologic and biochemical effects of acute ventral exposure of conscious rats to 2450-MHz (CW) microwave radiation, Bioelectromag., 7: 223.CrossRefGoogle Scholar
  60. Genzel, L., Kremer, F., Poglitsch, A., and Bechtold, G., 1983, Relaxation processes on a picosecond time scale in hemoglobin and poly (L-Alanine) observed by millimeter-wave spectroscopy, Biopolymers, 22: 1715.CrossRefGoogle Scholar
  61. Grant, E.H., 1982, The dielectric method of investigating bound water in biological material: An appraisal of the technique, Bioelectromag., 3: 17.CrossRefGoogle Scholar
  62. Grant, E.H., McClean, V.E.R., Nightingale, N.R.V., Sheppard, R.J., and Chapman, M.J., 1986, Dielectric behavior of water in biological solutions: studies on myoglobin, human low-density lipoprotein, and polyvinylpyrrolidone, Bioelectromag., 7: 151.CrossRefGoogle Scholar
  63. Grundler, W., Keilman F., and Frohlich, H., 1977, Resonant growth rate response of yeast cells irradiated by weak microwaves, Phys. Lett., 62A: 463.CrossRefGoogle Scholar
  64. Grundler, W., and Keilmann, F., 1978, Nonthermal effects of millimeter microwaves on yeast growth, Z. Naturforsh, 33: 15.Google Scholar
  65. Grundler, W., Keilmann, F., and Strube, D., 1982, Resonant-like dependence of yeast growth rate on microwave frequencies, Br. J. Cancer, 45 (5): 206.Google Scholar
  66. Grundler, W., Keilmann, F., Putterlik, V., Santo, L., Strube, D., and Zimmermann, I., 1983, Non-thermal resonant effects of 42-GHz microwaves on the growth of yeast cultures, In: “Coherent excitations in biological systems”, H. Frohlich, and F. Kremer, eds., Springer-Verlag, Berlin.Google Scholar
  67. Hodgkin, A.L., and Huxley, A.F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117: 500.Google Scholar
  68. Hucho, F., The nicotinic acetylcholine receptor and its ion channel, J. Biochem., 158: 211. 1952.Google Scholar
  69. Kaczmarek, L.K., and Adey, W.R., 1974, Weak electric gradients change ionic and transmitter fluxes in cortex, Brain. Res., 66: 537.CrossRefGoogle Scholar
  70. Kaiser, F., 1980, Nonlinear oscillations in physical and biological systems, In: “Nonlinear electromagnetics, ” P.L.E. Uslenghi, ed., Academic Press, New York.Google Scholar
  71. Kaiser, F., 1982, Theory of resonant effects of RF and MW energy, In: “Biological effects and dosimetry of nonionizing radiation, ” S.M. Michaelson, ed., Plenum Press, New York.Google Scholar
  72. Kaiser, F., 1984, Entrainment-quasiperiodicity - chaos - collapse: bifurcation routes of externally driven self sustained oscillating systems, In: “Nonlinear electrodynamics in biological systems, ” W.R Adey, and A.F. Lawrence, eds., Plenum Press, New York.Google Scholar
  73. Keilmann, F., 1982, Experimental rf and mw resonant nonthermal effects, In: “Biological effects and dosimetry of nonionizing radiation, ” S.M. Michaelson, M. Grandolfo, and A. Rindi, eds, Plenum Press, New York.Google Scholar
  74. Kohli, M., Mei, W.N., Prohofsky, E.W., and Van Zandt, L.L., 1981, Calculated microwave absorption of double-helical B-conformation Poly (dG) Poly (dC), Biolzaymars, 20: 853.Google Scholar
  75. Kremer, F., Koschnitzke, C., Santo, L., Quick, P., and Poglitsch, A., 1983, The non-thermal effect of millimeter wave radiation on the puffing of giant chromosomes, In: “Coherent Excitations in Biological Systems”, H. Frohlich, and F. Kremer, eds., Springer-Verlag, Berlin.Google Scholar
  76. Kremer, F., Poglitsh, A., and Genzel, L., 1984, Picosecond relaxations in proteins and biopolymers observed by MM-wave spectroscopy, In: “Nonlinear electrodynamics in biological systems,” W.R. Adey, and A.F. Lawrence, eds., Plenum Press, New York.Google Scholar
  77. Lawrence, A.F., and Adey, W.R., 1982, Non-linear wave mechanisms in interaction between excitable tissue and electromagnetic fields, Neurol. Res., 4, 115.Google Scholar
  78. Lerner, E.J., 1984, Biological effects of electromagnetic fields, IEEE Spectrum, 21: 57.Google Scholar
  79. Liboff, A.R., 1985, Cyclotron resonance in membrane transport, In: “Interaction between electromagnetic fields and cells”, A. Chiabrera, C. Nicolini, and H.P. Schwan, eds., Plenum Press, New York.Google Scholar
  80. Lin, J.C., 1978, “Microwave Auditory Effects and Applications”, C.C. Thomas, Springfield.Google Scholar
  81. Lin, J.C., 1977a, On Microwave-Induced Hearing Sensation, IEEE Trans. MTT, 25: 605.CrossRefGoogle Scholar
  82. Lin, J.C., 1977b, Further Studies on the Microwave Auditory Effect, IEEE Trans MTT, 25: 938.CrossRefGoogle Scholar
  83. Lin, J.C., O’Neill, W.D., Field, A., and Ginsburg, K., 1987, Pulsed high power microwave effects on spontaneous firing activities of snail neurons, 9th Annual Meet. of Bioelectromag. Soc., (Abstr.) G-3, Portland, USA.Google Scholar
  84. Lords, J.L., Durney, C.H., Borg, A.M. and Tinney, C.E., 1973, Rate effects in isolated hearts induced by microwave irradiation, MT, 21: 834.Google Scholar
  85. Marconi, L., Morgavi, G., Ridella, S., and Rolando, C., 1985, Nonlinear ionic fluxes in EMF exposed cells, In: “Interaction between electromagnetic fields and cells, ” A. Chiabrera, C. Nicolini, and H.P. Schwan, eds., Plenum Press, New York.Google Scholar
  86. Mc Laughlin, S., and Poo, M.M., 1981, The role of electro-osmosis in the electric field -induced movement of charged macromolecules on the surface of cells., Biophys. J., 34: 85.CrossRefGoogle Scholar
  87. McLeod, B.R., and Liboff, A.R., 1986, Dynamic characteristics of membrane ions in multifield configurations of low frequency electromagnetic radiation, Bioelectromag., 7: 177.CrossRefGoogle Scholar
  88. Merritt, J.G., Shelton, W.S., and Chamnes, A.F., 1982, Attempt to alter 45Ca2+ binding to brain tissue with pulse-modulated microwave energy, Bioelectromag., 3: 475.CrossRefGoogle Scholar
  89. Michaelson S.M., and Lin, J.C., 1987, “Biological effects and health implications of radiofrequency radiation,” Plenum Press, New York.Google Scholar
  90. Olsen, R.G., and Lin, J.C., 1983, Microwave-induced pressure waves in mammalian brains, EE., 30: 289.Google Scholar
  91. Pethig, R., 1979, “Dielectric and Electronic Properties of Biological Materials,” John Wiley & Sons, Chichester.Google Scholar
  92. Pickard, W.F., and Rosenbaum, F.J., 1978, Biological effects of microwaves at the membrane level: two possible athermal electrophysiological mechanisms and a proposed experimental test, Math Biosci., 39: 235.MATHCrossRefGoogle Scholar
  93. Pilla, A.A., Chiabrera, A., Kaufman, J.J., and Ryaby J.T., 1987, A unified electrochemical approach to electrical and magnetic modulation of biological processes: application to the paramecium ciliary movement, 9th Annual Meet of Bioelectromag. Soc., (Abstr.) F-6, Portland, USA.Google Scholar
  94. Polk, C., and Postow, E., 1986, “Handbook of biological effects of electromagnetic fields,” CRC Press, Boca Raton, Florida.Google Scholar
  95. Postow, E., Swicord, M.L., 1986, Modulated fields and “window” effects, In: “Handbook of biological effects of electromagnetic fields,” C. Polk, and E. Postow, eds, CRC Press, Boca Raton, Florida.Google Scholar
  96. Schwan, H.P., and Foster, K.R., 1980, RF-field interactions with biological systems: Electrical properties and biophysical mechanisms, Proc. IEEE, 68: 104.CrossRefGoogle Scholar
  97. Seaman, R., and Wachtel, H., 1978, Slow and rapid response to CW and pulsed microwave radiation by individual Aplysia pacemakers, J. Microwave Power, 13: 77.Google Scholar
  98. Seaman, R.L., Ajer, R.K., and DeHaan, R.L., 1982, Changes in cardiac-cell membrane noise during microwave exposure, Proc. of the IEEE-MTT Symp., 1: 436.Google Scholar
  99. Smith, S.D., McLeod, B.R., Liboff, A.R., and Cooksey, K., 1987, Calcium cyclotron resonance and diatom mobility, Bioelectromag., 8: 218.CrossRefGoogle Scholar
  100. Swicord, M.L., Edwards, G.S., Sagripanti, J.L., and Davis, C.C., 1983, Chain-length-dependent microwave absorption of DNA, Biopolymers, 22: 2513.CrossRefGoogle Scholar
  101. Swicord, M.L., and Davis, C.C., 1984, Microwave absorption of DNA between 8 and 12 GHz, Biopolymers, 24: 21.Google Scholar
  102. Thomas, J.R., Schrot, J., and Liboff, A.R., 1987, Low-intensity magnetic fields alter operant behavior in rats, Bioelectromag., 7: 349.CrossRefGoogle Scholar
  103. Tinney, C.E., Lords, J.L., and Durney, C.H., 1976, Rate effects in isolated turtle hearts induced by microwave irradiation, IEEE Trans. MTT, 24: 18.CrossRefGoogle Scholar
  104. Van Zandt, L.L., Kholi, M., Prohofsky, E.W., 1982, Absorption of microwave radiation by the double elix in aquo, Biopolymers, 21: 1465.CrossRefGoogle Scholar
  105. Wachtel, H., Seaman, R., and Joines, W., 1975, Effects of low-intensity microwaves on isolated neurons, Ann, N.Y. Acad. Sci., 247: 46.ADSCrossRefGoogle Scholar
  106. Webb, S.J., and Dodds, D.E., 1968, Inhibition of bacterial cell growth by 136-GHz microwaves, Nature, 218: 374.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Paolo Bernardi
    • 1
  • Guglielmo D’Inzeo
    • 1
  1. 1.Department of ElectronicsUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations