Advertisement

Biological Effects of Radio Frequency Electromagnetic Radiation

  • W. Ross Adey

Abstract

In the last 50 years, there has been an exponential growth of man-made electromagnetic (EM) fields, associated with comunication systems that now blanket the earth and with a vast and ever-increasing network of electric power distribution systems (Nat. Acad. Sci. USA, 1977). It is therefore curious that although many of the most important fundamental observations on the physical effects of light and other nonionizing EM radiations were made more than 100 years ago, knowledge of their biological effects has grown more slowly. Tissue interactions with EM fields have been extensively studied in terms of two quite different endpoints; in their thermal effects and in ionization of atoms in biomolecular systems.

Keywords

Phorbol Ester Epidermal Growth Factor Receptor Protein Microwave Theory Tech Nonlinear Electrodynamic Radio Frequency Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Achimowicz, A. Cader, A., L. Pannert, and E. Wojcik, Phys. Lett 60A: 383 (1977).Google Scholar
  2. 2.
    W.R. Adey, in: “Functional Linkage in Biomolecular Systems” F.O. Schmitt, D.M. Crothers and D.M. Schneider (eds.) Raven, New York, p. 325 (1975).Google Scholar
  3. 3.
    W.R. Adey, BioSystems 8: 163 (1977).Google Scholar
  4. 4.
    W.R. Adey, Physiol. Rev. 61: 435 (1981a).Google Scholar
  5. 5.
    W.R. Adey, in: “Biological Effects of Nonionizing Radiation” K.H. Illinger (ed.) Am. Chem. Soc., Washington D.C., p. 271 (1981b).Google Scholar
  6. 6.
    W.R. Adey, in “Synergetics of the Brain” E. Basar, H. Flohr, H. Haken A.J. Mandell (eds) Springer, Berlin, Heidelberg, New York, p. 201 (1983)Google Scholar
  7. 7.
    W.R. Adey, in: “Nonlinear Electrodynamics in Biological Systems” W.R. Adey and A.F. Lawrence (eds.) p. 3 (1984).Google Scholar
  8. 8.
    W.R. Adey, Bioelectrochem. Bioenergetics 15: 447 (1986).Google Scholar
  9. 9.
    W.R. Adey, in: “Interactions of Biological Systems with Static and ELF Electric and Magnetic Fields”. 23rd Hanford Life Sciences Symposium. U.S. Department of Energy, Washington D.C. Symposium Series DOE-60, p. 237 (1988).Google Scholar
  10. 10.
    W.A. Adey, in: “Biophysical Aspects of Cancer” J. Fiala and J. Pokorny (eds.) Charles University, Prague, p. (1987).Google Scholar
  11. 11.
    W.R. Adey, in: Dynamics of Sensory and Cognitive Processing in the Brain“. Second Symposium. E. Basar (ed.) Springer, Heidelberg (1987).Google Scholar
  12. 12.
    W.R. Adey, Neurochem. Res. 13: 671 (1988).Google Scholar
  13. 13.
    W.R. Adey, in: “Biological Coherence and Response to External Stimuli” H. Frohlich (ed.) Springer, Heidelberg p. 148 (1988).Google Scholar
  14. 14.
    W.R. Adey and S.M. Bawin, Radio Science 17 (5S): 149S (1982).ADSGoogle Scholar
  15. 15.
    W.R. Adey, S.M. Bawin and A.F. Lawrence, Bioelectromagnetics 3: 295 (1982).Google Scholar
  16. 16.
    W.R. Adey and A.F. Lawrence (eds.) “Nonlinear Electrodynamics in Biological Systems” Plenum, New York (1984).Google Scholar
  17. 17.
    D. Aswad and D.E. Koshland, J. Bacteriol. 118: 640 (1974).Google Scholar
  18. 18.
    E.K. Balcer-Kubiczek and G.H. Harrison, Carcinogenesis 6: 859 (1985).Google Scholar
  19. 19.
    V.S. Bannikov, S.M. Bezruchko, E.V. Grishankova, S.B. Kuz’min, Y.A. Mityagin, R.Y. Orlov, S.B. Rozhkov and V.A. Sokolina, Dokl. Akad. Nauk SSR 253:479 (1980)Google Scholar
  20. 19.
    V.S. Bannikov, S.M. Bezruchko, E.V. Grishankova, S.B. Kuz’min, Y.A. Mityagin, R.Y. Orlov, S.B. Rozhkov and V.A. Sokolina, Dokl. Biophys. (Eng. Trans.) 253: 119 (1980).Google Scholar
  21. 20.
    P.W.Barber, O.P. Gandhi, M.J. Hagmann and I. Chattergee, IEEE Trans. Biomed. Eng. 26: 400 (1979).Google Scholar
  22. 21.
    S.M. Bawin and W.R. Adey, Proc. Nat. Acad. Sci. USA 73: 1999 (1976).ADSGoogle Scholar
  23. 22.
    S.M. Bawin, L.K. Kacmarek and W.R. Adey, Ann. NY Acad. Sci. 247: 74 (1975).ADSGoogle Scholar
  24. 23.
    S.M. Bawin, W.R. Adey and I.M. Sabbot, Proc. Nat. Acad. Sci. USA 75: 6314 (1978a).ADSGoogle Scholar
  25. 24.
    S.M. Bawin, A.R. Sheppard and W.R. Adey, Bioelectrochem. Bioenergetics 5: 67 (1978b).Google Scholar
  26. 25.
    D.E. Beischer and V.R. Reno, Ann. NY Acad. Sci. 247: 473 (1975).ADSGoogle Scholar
  27. 26.
    A.A. Benson, J. Amer. Oil Chem. Soc. 43: 265 (1966).Google Scholar
  28. 27.
    D. Bhaumik, K. Bhaumik and B. Dutta-Roy, Phys. Lett 56A: 145 (1976).Google Scholar
  29. 28.
    C.F. Blackman, J.A. Elder, C.M. Weil, S.G. Benane, D.C. Eichinger and D.E. House, Radio Sci. 14: 93 (1979).ADSGoogle Scholar
  30. 29.
    C.F. Blackman, S.G. Benane, L.S. Kinney, D.E. House and W.T. Joines, Radiat. Res. 92: 510 (1982).Google Scholar
  31. 30.
    C.F. Blackman, S.G. Benane, D.E. House and W.T. Joines, W.T., Bioelectromagnetics 6: 1 (1985a).Google Scholar
  32. 31.
    C.F. Blackman, S.G. Benane, J.R. Rabinowitz, D.E. House and W.T. Joines, Bioelectromagnetics 6: 327 (1985b).Google Scholar
  33. 32.
    M. Blank, J. Colloid Interface Sci. 41: 97 (1972).Google Scholar
  34. 33.
    M. Blank, J. Electrochem. Soc. 123: 1653 (1976).Google Scholar
  35. 34.
    K.J. Blinowska, W. Lech and A. Wittlin, Phys. Lett. 109A: 124 (1985).Google Scholar
  36. 35.
    C.V. Byus, S. Pieper and W.R. Adey, Carcinogenesis 8: 1385 (1987).Google Scholar
  37. 36.
    C.V. Byus, K. Kartun, S. Pieper and W.R. Adey, Submitted to Cancer Research (1988).Google Scholar
  38. 37.
    C.D. Cain, W.R. Adey and R.A. Luben, J. Bone Mineral Res. 2: 437 (1987).Google Scholar
  39. 38.
    G.A. Carpenter and S. Grossberg, J. Theoret. Neurobiol. 1: 1 (1983).Google Scholar
  40. 39.
    K.S. Cole, Cold Spring Harbor Symp. Quant. Biol. 4: 110 (1940).Google Scholar
  41. 40.
    J.S. Coombs, D.R. Curtis and J.C. Eccles, J. Physiol. London 145: 505 (1959).Google Scholar
  42. 41.
    M.S. Cooper and N.M. Amer, Phys. Lett. 98A: 138 (1983).Google Scholar
  43. 42.
    H. Dayson and J.F. Danielli, “The Permeability of Natural Membranes”, 2nd Edition, University Press, Cambridge, (1952).Google Scholar
  44. 43.
    A.S. Davydov, Physica Scripta 20: 387 (1979).ADSMATHMathSciNetGoogle Scholar
  45. 44.
    R. Dixey and G. Rein, Nature 296: 253 (1981).ADSGoogle Scholar
  46. 45.
    F. Drissler and R.M. Macfarlane, Phys. Lett. 69A: 65 (1978)Google Scholar
  47. 46.
    F. Drissler and L. Santo, in: “Coherent Excitation in Biological Systems” H. Frohlich and F. Kremer (eds.) Springer, p. 6, Berlin (1983).Google Scholar
  48. 47.
    W. Drost-Hansen (ed.) “Cell Associated Water” Academic Press, New York (1978).Google Scholar
  49. 48.
    S.K. Dutta, A. Subramoniam, B. Ghosh and R. Parsad, Bioelectromagnetics 5: 71 (1984).Google Scholar
  50. 49.
    J.C. Eccles, “The Neurophysiological Basis of Mind”, Clarendon Press, Oxford (1953).Google Scholar
  51. 50.
    G.M. Edelman, I. Yahara and J.L. Wang, Proc Nat. Acad. Sci. USA 70: 1442 (1973).ADSGoogle Scholar
  52. 51.
    G.S. Edwards, C.C. Davis, M.L. Lett. 53: 1284 (1984).Google Scholar
  53. 52.
    J. Engel and G. Schwarz, Angew. Chem. Int. Ed. 9:389 (1970).Google Scholar
  54. 53.
    R.J. Fitzsimmons, J. Farley, W. R. Adey and D.J. Baylink, Biochim. Biophys. Acta 882: 51 (1986).Google Scholar
  55. 54.
    W.H. Fletcher, W.W. Shiu, D.A. Haviland, C.F. Ware and W.R. Adey, Proc. Bioelectromagnetics Soc., 8th Annual Meeting, Madison WI. p. 12 (abstract). (1986).Google Scholar
  56. 55.
    W.H. Fletcher, W.W. Shiu, T.A. Ishida, D.L. Haviland and C.F. Ware, J. Immunol. 139: 956 (1987a).Google Scholar
  57. 56.
    W.H. Fletcher, C.V. Byus and D.A. Walsh, Adv. in Exper. Med. Biol. 219:299 (1987b).Google Scholar
  58. 57.
    K.R. Foster and A.W. Guy, Sci. Amer. 255: 32 (1986).Google Scholar
  59. 58.
    K.R. Foster and W.F. Pickard, Nature 330: 531 (1987).ADSGoogle Scholar
  60. 59.
    K. R. Foster, M.A. Stuchly, A. Kraszewski and S.S. Stuchly, Biopolymers 23: (1983).Google Scholar
  61. 60.
    H. Frohlich, Nature 157: 478 (1946).ADSGoogle Scholar
  62. 61.
    H. Frohlich, Int. J. Quant. Chem. 2: 641 (1968).ADSGoogle Scholar
  63. 62.
    H. Frohlich, Phys. Lett. 29A: 153 (1972).Google Scholar
  64. 63.
    H. Frohlich, Proc. Nat. Acad. Sci. USA (1975).Google Scholar
  65. 64.
    H. Frohlich, Neurosci. Res. Program Bull. 15: 67 (1977).Google Scholar
  66. 65.
    H. Frohlich, IEEE Trans. Microwave Theory Tech. 26: 613 (1978).Google Scholar
  67. 66.
    H. Frohlich, Adv. Electronics Electron Phys. 53: 85 (1980)Google Scholar
  68. 67.
    H. Frohlich, in: “Modern Bioelectrochemistry”, F. Gutmann and F. Keyzer (eds.) Plenum, New York, p. 241 (1986a)Google Scholar
  69. 68.
    H. Frohlich, in: “The Fluctuating Enzyme”, G.R. Welch (ed.) Wiley, New York, p. 421 (1986b).Google Scholar
  70. 69.
    L. Furia and O.P. Gandhi, Phys. Lett. 102A: 380 (1984).Google Scholar
  71. 70.
    E.J. Furshpan and T. Furikawa, J. Neurophysiol. 25: 732 (1962).Google Scholar
  72. 71.
    C. Gabriel, E.H. Grant, R. Tata, P.R. Brown, B. Gestblom and E Noreland, Nature 328: 145 (1987).ADSGoogle Scholar
  73. 72.
    O.P. Gandhi, K. Sedigh, G.S. Beck and E.L. Hunt, in: “Biological Effects of Electromagnetic Waves”, C.C. Johnson and M.L. Shore (eds), Bureau of Radiological Health, Rockville MD. HEW Publication 77–8010, p. 44 (1976).Google Scholar
  74. 73.
    O.P. Gandhi, E.L. Hunt and J.A. d’Andrea, Radio Sci. 12. Supp1. 6: 39 (1977).Google Scholar
  75. 74.
    O.P. Gandhi and M.J. Hagmann, in: “The Physical Basis of Electromagnetic Interactions with Biological Systems”, L.S. Taylor and A.Y. Cheung (eds.) University of Maryland, College Park, p. 243 (1977).Google Scholar
  76. 75.
    J.L. Gmitro and L.E. Scriven, in: “Intracellular Transport”, K.B. Warren (ed.), Academic Press, New York, p. 221 (1966).Google Scholar
  77. 76.
    E. Grant, in: “The Physical Basis of Electromagnetic Interactions with Biological Systems”, L.S. Taylor and A.Y. Cheung (eds.) University of Maryland, College Park, p. 113 (1977).Google Scholar
  78. 77.
    I.T. Grodsky, Math. Biosci. 28: 191 (1976).MATHGoogle Scholar
  79. 78.
    S. Grossberg, in: “Synergetics of the Brain”, E. Basar, H. Flohr, H. Haken and A.J. Mandell (eds.) Springer, Berlin, Heldelberg, New York, p. 274 (1983).Google Scholar
  80. 79.
    W. Grundler, F. Keilmann and H. Frohlich, Phys. Lett. 62A: 463 (1977).Google Scholar
  81. 80.
    M.J. Hagmann, O.P. Gandhi and C.H. Durney, IEEE Microwave Theory Tech. 27: 804 (1979).ADSGoogle Scholar
  82. 81.
    A.L. Hodgkin and A.F. Huxley, J. Physiol. London 117: 500 (1952).Google Scholar
  83. 82.
    J.M. Hyman, D.W. McLaughlin and A.C. Scott, Physica D 30: 23 (1981).ADSGoogle Scholar
  84. 83.
    K.H. Illinger, (ed.) “Biological Effects of Nonionizing Radiation”, Am. Chem. Soc. Symp. Ser. 157, (1981).Google Scholar
  85. 84.
    C.C. Johnson, C.H. Durney, P.W. Barber, H. Massoudi, S.J. Allen and J.C. Mitchell, Radio Sci. 12. Suppl. 6: 57 (1977).ADSGoogle Scholar
  86. 85.
    L.K. Kaczmarek, Biophys. Chem. 4: 249 (1976).Google Scholar
  87. 86.
    L.K. Kaczmarek and W.R. Adey, Brain Res. 63: 331 (1973).Google Scholar
  88. 87.
    L.K. Kaczmarek and W.R. Adey, Brain Res. 66: 537 (1974).Google Scholar
  89. 88.
    F. Kaiser, in: “Nonlinear Electrodynamics in Biological Systems”, W.R. Adey and A.F. Lawrence (eds.) Plenum, New York, p. 393 (1984).Google Scholar
  90. 89.
    A. Katchalsky, Neurosci. Res. Program Bull. 12: 30 (1974).Google Scholar
  91. 90.
    A. Katchalsky and P.F. Curran, “Nonequilibrium Thermodynamics in Biophysics”, Harvard University Press, Cambridge MA (1965).Google Scholar
  92. 91.
    A. Katchalsky, V. Rowland and R. Blumenthal (eds.) Neurosci. Res. Program Bull. 12:1 (1974).Google Scholar
  93. 92.
    J.D. Keeler and J.D. Farmer, Physica D 23: 413 (1986).ADSMathSciNetGoogle Scholar
  94. 93.
    S. Kinoshita, H. Kuniko and T. Kushida, J. Phys. Soc. Japan 49: 314 (1980)ADSGoogle Scholar
  95. 94.
    M. Kohli, N. Mei, E.W. Prohofsky and L.L. Van Zandt, Biopolymers 20: 853 (1981).Google Scholar
  96. 95.
    D.E. Koshland, in: “Functional Linkage in Biomolecular Systems” F.O. Schmitt, D.M. Crothers and D.M. Schneider (eds.) Raven Press, New York, p. 273 (1975).Google Scholar
  97. 96.
    H.N. Kritikos and H.P. Schwan, IEEE Trans. Biomed. Eng. 23: 168 (1976).Google Scholar
  98. 97.
    A.F. Lawrence and W.R. Adey, Neurol. Res. 4: 115 (1982).Google Scholar
  99. 98.
    A.F. Lawrence, J.C. McDaniel, D.B. Chang and R.R. Birge, Biophys. J. 51: 785 (1987).Google Scholar
  100. 99.
    A.R. Liboff, in: “Interactions Between Electromagnetic Fields and Cells” A. Chiabrera, C. Nicolini and H.P. Schwan (eds.), Plenum Press, New York, p. 281 (1985).Google Scholar
  101. 100.
    G.N. Ling, C. Miller and M.M. Ochsenfeld, Ann. NY Acad. Sci. 204: 6 (1973)ADSGoogle Scholar
  102. 101.
    S. Lin-Liu and W.R. Adey, Bioelectromagnetics 3: 309 (1982).Google Scholar
  103. 102.
    S. Lin-Liu, W.R. Adey and M.-M. Poo, Biophys. J. 45: 1211 (1984).Google Scholar
  104. 103.
    W.A. Little, Neurosci. Res. Program Bull. 15: 62 (1977).Google Scholar
  105. 104.
    P.S. Lomdahl, L. MacNeil, A.C. Scott, M.E. Stoneham and S.J. Webb, Phys. Lett. 92A: 207 (1982).Google Scholar
  106. 105.
    W.R. Loewenstein and Y. Kanno, Nature 209: 1248 (1966).ADSGoogle Scholar
  107. 106.
    W.R. Loewenstein, Biochim. Biophys. Acta 560: 1 (1979).Google Scholar
  108. 107.
    W.R. Loewenstein, Physiol. Rev. 61: 829 (1981).Google Scholar
  109. 108.
    R.A. Luben and C.D. Cain, in: “Nonlinear Electrodynamics in Biological Systems”, W.R. Adey and A.F. Lawrence (eds.) p. 23 (1984).Google Scholar
  110. 109.
    R.A. Luben, C.D. Cain, M.Y.Chen, D.M. Rosen and W.R. Adey, Proc. Nat. Acad. Sci. USA 79: 4180 (1982).ADSGoogle Scholar
  111. 110.
    D.B. Lyle, P. Schechter, W.R. Adey and R.L. Lundak Bioelectromagnetics 4: 281 (1983).Google Scholar
  112. 111.
    D.B. Lyle, R.D. Ayotte, A.R. Sheppard and W.R. Adey, Bioelectromagnetics 9 (in press) (1988).Google Scholar
  113. 112.
    J. Maddox, Nature 324: 11 (1986).ADSGoogle Scholar
  114. 113.
    S. Milham, Environ. Health Perspectives 62: 297 (1985)Google Scholar
  115. 114.
    W.H.Moolenaar, R.J. Aerts, L.G.J. Tertoolen and S.W. DeLast, J. Biol. Chem. 261: 279 (1986).Google Scholar
  116. 115.
    National Academy of Sciences USA, “Biologic Effects of Electric and Magnetic Fields Associated with Proposed Project Seafarer”, Washington DC, 440pp (1977).Google Scholar
  117. 116.
    E. Neumann and A. Katchalsky, Proc. Nat. Acad. Sci. USA 69: 993 (1972).ADSGoogle Scholar
  118. 117.
    P. Newmark, Nature 327: 101 (1987).ADSGoogle Scholar
  119. 118.
    J.G. Nicholls and S.W. Kuffler,J. Neurophysiol. 27: 645 (1964).Google Scholar
  120. 119.
    J.S. Nicolis, in: “Synergetics of the Brain”, E. Basar, H. Flohr, H. Haken and A. J. Mandell (eds.), Springer, Berlin, Heidelberg, New York, p. 330 (1983).Google Scholar
  121. 120.
    J.S. Nicolis, G. Galanos and E.N. Protonotarios, Internat. J. Control 18: 1009 (1973).MATHGoogle Scholar
  122. 121.
    J.S. Nicolis, E. Protonotarios and E. Lianos, “The Role of Noise in ”Self-Organizing“ Systems”, Univ. of Patras, Greece, Dept. of Electrical Engineering, Technical Report CSB-1, 55 pp (1974).Google Scholar
  123. 122.
    B.O. Nilsson and L.E. Petterson, IEEE Trans. Microwave Theory Tech. 27: 616 (1979).ADSGoogle Scholar
  124. 123.
    Y. Nishizuka, Philos. Trans. R. Soc. London B302: 101 (1983).ADSGoogle Scholar
  125. 124.
    Y. Nishizuka, Nature 308: 693 (1984).ADSGoogle Scholar
  126. 125.
    R.M. Noyes and R.J. Field, Annual Rev. Phys. Chem. 25: 95 (1974).ADSGoogle Scholar
  127. 126.
    H.G. Othmer and L.E. Scriven, Ind. Eng. Chem. 8: 302 (1969).Google Scholar
  128. 127.
    H.G. Othmer and L.E. Scriven, J. Theor. Biol. 32: 507 (1971).Google Scholar
  129. 128.
    H.G. Othmer and L.E. Scriven, J. Theor. Biol. 43: 83 (1974).Google Scholar
  130. 129.
    G. Pasti, B.S. Warren, S.A. Aaronson, and P.M. Blumberg, Nature 324: 375 (1986).ADSGoogle Scholar
  131. 130.
    A.S. Perlin, Fed. Proc. 36: 106 (1977).Google Scholar
  132. 131.
    C. Polk, Proc. Biolectromagnetic Soc., 6th Annual Meeting, p. 77 (abstract) (1984).Google Scholar
  133. 132.
    E.W. Prohofsky, in: “The Mechanisms of Microwave Biological Effects”, L.S. Taylor and A.Y. Cheung (eds.) University of Maryland, College Park, p. 7 (1979).Google Scholar
  134. 133.
    M.J. Radeke, T.P. Misko, C. Hsu, L.A. Herzenberg and M. Shooter, Nature 325: 393 (1987).Google Scholar
  135. 134.
    L. Rayleigh, Philos. Mag. 32: 529 (1917).Google Scholar
  136. 135.
    H. Riedel, J. Schlessinger and A. Ullrich, Science 236: 197 (1986).ADSGoogle Scholar
  137. 136.
    J.D. Robertson, J. Cell. Biol. 19: 201 (1963).Google Scholar
  138. 137.
    M. Rodbell, M.C. Lin and Y. Salomon, J. Biol Chem. 249: 59 (1974).Google Scholar
  139. D.A. Savitz, H. Wachtel and F. Barnes, National Contractors’ Review US Dept of Energy, Office of Energy Storage and Distribution, Washington DC 20585, and Electric Power Research Institute Health Studies Program, Palo Alto, Calif. 94303. Proceedings, November, 1986.Google Scholar
  140. 139.
    F.O. Schmitt, D.M. Schneider and D.M. Crothers (eds.), “Functional Linkage in Biomolecular Systems”, Raven Press, New York (1975).Google Scholar
  141. 140.
    H.P. Schwan, Adv. Biol. Med. Phys. 5: 147 (1957).Google Scholar
  142. 141.
    H.P. Schwan, Proc. IRE 47: 1841 (1959).Google Scholar
  143. 142.
    H.P. Schwan, in: “Medical Physics”, O. Glasser (ed.), Yearbook Publishers, Chicago, p. 1, (1960).Google Scholar
  144. 143.
    H.P. Schwan, J. Cell Comp. Physiol. 66.Suppl.: 5 (1965a).Google Scholar
  145. 144.
    H.P. Schwan, Ann. NY Acad. Sci. 125: 344 (1965b).ADSGoogle Scholar
  146. 145.
    H.P. Schwan, in: “Biological Effects and Health Hazards of Microwave Radiation”, P. Czerski (ed.) Polish Med. Publ., Warsaw, p. 152 (1974).Google Scholar
  147. 146.
    H.P. Schwan, Neurosci. Res. Program Bull. 15: 88 (1977).Google Scholar
  148. 147.
    H.P. Schwan, R.J.Sheppard and E.H. Grant, J. Chem. Phys. 64: 2257 (1976)ADSGoogle Scholar
  149. 148.
    G. Schwarz, in “Functional Linkage in Biomolecular Systems”, F.O. Schmitt, D.M. Schneider and D.M. Crothers (eds.), Raven Press, New York, p. 32, (1975).Google Scholar
  150. 149.
    G. Schwarz and W. Balthasar, Eur. J. Biochem. 12: 461 (1970).Google Scholar
  151. 150.
    G. Schwarz, S. Klose and W. Balthasar, Eur. J. Biochem. 12: 454 (1970).Google Scholar
  152. 151.
    G. Schwarz and J. Seelig, Biopolymers 6: 1263 (1968).Google Scholar
  153. 152.
    A.C. Scott, Phys. Lett. A86: 60–62 (1981).Google Scholar
  154. 153.
    A.C. Scott, Phys. Rev. A31: 3518 (1985).ADSGoogle Scholar
  155. 154.
    A.R. Sheppard, W.F. Pickard and S.M. Bawin, Bioelectromagnetics Society, Proc. 6th Annual Meeting, p. 50 (1984).Google Scholar
  156. 155.
    S.J. Singer and G.L. Nicholson, Science 175: 720 (1972).ADSGoogle Scholar
  157. 156.
    K.D. Straub, in: “The Physical Basis of Electromagnetic Interactions with Biological Systems”, L.S. Taylor and A.Y. Cheung (eds.) University of Maryland, College Park, p. 35 (1977).Google Scholar
  158. 157.
    M.L.Swicord, G.S. Edwards and C.C. Davis, in: “Nonlinear Electrodynamics in Biological Systems”, W.R. Adey and A.F. Lawrence (eds.) Plenum, New York, p. 35 (1984).Google Scholar
  159. 158.
    M.L. Swicord, G.S. Edwards, J.L. Sagrapanti and C.C. Davis, Biopolymers 22: 2513 (1983).Google Scholar
  160. 159.
    K.Takahashi, I. Kaneko, M. Date and E. Fukada, Experientia 42: 185 (1986).Google Scholar
  161. 160.
    T.L. Thomas, P.D. Stolley, A. Stemhagen, E.T.H. Fontham, M.L. Bleeker, P.A. Stewart and R.N. Hoover, J. Nat. Cancer Inst. 79: 233 (1987).Google Scholar
  162. 161.
    J.E. Trosko, Eur. J. Cancer Clin. Oncol. 23: 599 (1987).Google Scholar
  163. 162.
    J.E. Trosko and C.C. Chang, in: Genetic Toxicology of Environmental Chemicals, Part B: Genetic Effects and Applied Mutagenesis“, Liss, New York, p. 21 (1986).Google Scholar
  164. 163.
    A.M. Turing, Philos. Trans. Roy. Soc. London B237: 37 (1952).ADSGoogle Scholar
  165. 164.
    A. Ullrich, L. Coussens, J.S. Hayflick, T.J. Dull, A. Gray, A.W. Tam J. Lee, Y. Yarden, T.A. Libermann, J. Schlessinger, J. Downward, E.L.V. Mayes, N. Whittle, M.D. Waterfield and P.H. Seeburg, Nature 309: 428 (1985).Google Scholar
  166. 165.
    J.H. Van Vleck and V.F. Weisskopf, Rev. Mod. Phys. 17: 27 (1945).ADSGoogle Scholar
  167. 166.
    L.L. Van Zandt, M. Kohli and E.W. Prohofsky, Biopolymers 21: 1465 (1982).Google Scholar
  168. 167.
    S.J. Webb, Phys. Rep. 60: 201 (1980).ADSGoogle Scholar
  169. 168.
    S.J. Webb and D.D. Dodds, Nature 218: 374 (1968).ADSGoogle Scholar
  170. 169.
    N. Wertheimer and E. Leeper, Am. J. Epidemiol. 109: 273 (1979).Google Scholar
  171. 170.
    J. Wyman, Adv. Protein Chem. 4: 407 (1948).Google Scholar
  172. 171.
    J. Wyman and D.W. Allen, J. Polymer Sci. 7499 (1951).ADSGoogle Scholar
  173. 172.
    H. Yamasaki, in: “Nongenotoxic Mechanisms in Carcinogenesis”, B.E. Butterworth and T.J. Slaga (eds.) Cold Spring Harbor Laboratory, Banbury Report 25, p. 297 (1987).Google Scholar
  174. 173.
    L.P. Yotti, C.C. Chang and J.E. Trosko, Science 206: 1089 (1979)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • W. Ross Adey
    • 1
  1. 1.Veterans Administration Medical Center and Loma Linda University School of MedicineLoma LindaUSA

Personalised recommendations