Biological Responses to Static and Time-Varying Magnetic Fields

  • T. S. Tenforde


The numerous sources of high-intensity magnetic fields used in industry, research and medicine have led to an increased interest in determining the effects of these fields on biological systems. In this chapter a detailed description is given of the physical mechanisms through which magnetic fields interact with living matter at the tissue, cellular and molecular levels. The biological interactions of static magnetic fields, extremely-low-frequency (ELF) magnetic fields with frequencies below 300 Hz, and combined static and ELF fields are considered. A general summary is given of laboratory studies and possible human health effects associated with exposure to static and ELF magnetic fields.


Magnetic Field Magnetic Field Effect Magnetotactic Bacterium Magnetic Field Exposure Residential Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W. R., 1981, Tissue interactions with nonionizing electromagnetic fields, Physiol. Rev., 61: 435.Google Scholar
  2. Barlow, H. B., Kohn, H. I., and Walsh, E. G., 1947, Visual sensations aroused by magnetic fields, Am. J. Physiol., 29: 124.Google Scholar
  3. Baroncelli, P., Battisti, S., Checcucci, A., Combat R., Grandolfo, M., Serio, A., and Vecchia, P., 1986, A health examination of railway high-voltage substation workers exposed to ELF electromagnetic fields, Am. J. Indust. Med., 10: 45.CrossRefGoogle Scholar
  4. Barregârd, L., Järvholm, B., and Ungethum, E., 1985, Cancer among workers exposed to strong static magnetic fields, Lancet, 2 (8460): 892.CrossRefGoogle Scholar
  5. Bassett, C. A. L., Mitchell, S. N., and Gaston, S. F., 1982, Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses, J. Am. Med. Assoc., 247: 623.CrossRefGoogle Scholar
  6. Becker, J. F., Trentacosti, F., and Geacintov, N. E., 1978, A linear dichroism study of the orientation of aromatic protein residues in magnetically oriented bovine rod outer segments, Photochem. Photobiol., 27: 51.CrossRefGoogle Scholar
  7. Beischer, D. E., 1969, Vectorcardiogram and aortic blood flow of squirrel monkeys (Saimiri sciureus) in a strong superconductive electromagnet, pp. 241–259 in: “Biological Effects of Magnetic Fields,” Vol. 2, M. F. Barnothy, ed., Plenum, New York.Google Scholar
  8. Beischer, D. E. and Knepton, J. C., 1964, Influence of strong magnetic fields on the electrocardiogram of squirrel monkeys ( Saimiri sciureus ), Aerospace Med., 35: 939.Google Scholar
  9. Bernhardt, J., 1979, The direct influence of electromagnetic fields on nerve and muscle cells of man within the frequency range of 1 Hz to 30 MHz, Radiat. Envir. Biophys., 16: 309.Google Scholar
  10. Blackman, C. F., Benane, S. G., Rabinowitz, J. R., House, D. E., and Joines, W. T., 1985, A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro, Bioelectromagnetics, 6: 327.CrossRefGoogle Scholar
  11. Blakemore, R., 1975, Magnetotactic bacteria, Science, 190: 377.ADSCrossRefGoogle Scholar
  12. Blakemore, R. P., Frankel, R. B., and Kalmijn, A. J., 1980, South-seeking magnetotactic bacteria in the Southern Hemisphere, Science, 212: 1269.Google Scholar
  13. Budinger, T. F, Bristol, K. S., Yen, C. K., and Wong, P., 1984, Biological effects of static magnetic fields, pp. 113–114 in: Proc.3rd Ann. Meeting Soc. Mag. Res. Med., New York, Aug. 4–6, 1984.Google Scholar
  14. Budinger, T. F., Cullander, C., and Bordow, R., 1984, Switched magnetic field thresholds for the induction of magnetophosphenes, pp. 118–119 in: Proc. 3rd Ann. Meeting Soc. Mag. Res. Med., New York, Aug. 4–6, 1984.Google Scholar
  15. Carstensen, E. L., Buettner, A., Genberg, V. L., and Miller, M. W., 1985, Sensitivity of the human eye to power frequency electric fields, IEEE Trans. Biomed. Engin., BME-32: 561.Google Scholar
  16. D’Arsonval, M. A., 1896, Dispositifs pour la measure des courants alternatifs â toutes frequencies, C.R. Soc. Biol. (Paris), 3 (100 Ser.): 450.Google Scholar
  17. Delgado, J. M. R., Leal, J., Monteagudo, J. L., and Garcia, M. G., 1982, Embryological changes induced by weak, extremely low frequency electromagnetic fields, J. Anat., 134: 533.Google Scholar
  18. Fildes, B. N., O’Loughlin, B. J., and Bradshaw, J. L., 1984, Humanorientation with restricted sensory information: no evidence for magnetic sensitivity, Perception, 13: 229.CrossRefGoogle Scholar
  19. Frankel, R. B., 1986, Biological effects of static magnetic fields,pp. 169–196 in: “Handbook of Biological Effects of Electromagnetic Fields,” C. Polk and E. Postow, eds., CRC Press, Boca Raton, Florida.Google Scholar
  20. Frankel, R. B., Blakemore, R. P., and Wolfe, R. S., 1979, Magnetite in freshwater magnetotactic bacteria, Science, 203: 1355.Google Scholar
  21. Frankel, R. B., Blakemore, R. P., Torres de Araujo, F. F., and Esquival, D. M. S., 1981, Magnetotactic bacteria at the geomagnetic equator, Science, 212: 1269.ADSCrossRefGoogle Scholar
  22. Frazier, M. E., Andrews, T. K., and Thompson, B. B., 1979, In vitro evaluation of static magnetic fields, pp. 417–435 in: “Biological Effects of Extremely Low Frequency Electromagnetic Fields,” R. D. Phillips, M. F. Gillis, W. T. Kaune, and D. D. Mahlum, eds., NTIS Rep. No. CONF-781016, Springfield, Virginia.Google Scholar
  23. Fulton, J. P., Cobb, S., Preble, L., Leone, L., and Forman, E., 1980, Electrical wiring configurations and childhood leukemia in Rhode Island, Am. J. Epidemiol., 111: 292.Google Scholar
  24. Gaffey, C. T. and Tenforde, T. S., 1979, Changes in the electrocardio-grams of rats and dogs exposed to DC magnetic fields, Lawrence Berkeley Laboratory Rep. No. 9085, University of California, Berkeley, California.Google Scholar
  25. Gaffey, C. T. and Tenforde, T. S., 1981, Alterations in the rat electro-cardiogram induced by stationary magnetic fields, Bioelectromag-netics, 2: 357.CrossRefGoogle Scholar
  26. Gaffey, C. T. and Tenforde, T. S., 1983, Bioelectric properties of frog sciatic nerves during exposure to stationary magnetic fields, Radiat. Envir. Biophys., 22: 61.Google Scholar
  27. Gaffey, C. T. and Tenforde, T. S., 1984, Electroretinograms of cats and monkeys exposed to large stationary magnetic fields, p. 7 in: Abst. 6th Ann. Meeting Bioelectromagnetics Soc., Atlanta, Georgia, July 15–19, 1984.Google Scholar
  28. Gould, J. L., Kirschvink, J. L., and Deffeyes, K. S., 1978, Bees have magnetic remanence, Science, 201: 1026.ADSCrossRefGoogle Scholar
  29. Gould, J. L. and Able, K. P., 1981, Human homing: an elusive phenomenon, Science, 214: 2061.Google Scholar
  30. Hoff, A. F., 1981, Magnetic field effects on photosynthetic reactions, Quart. Rev. Biophys., 14: 599.Google Scholar
  31. Kalmijn, A. J., 1982, Electric and magnetic field detection in elasmo-branch fishes, Science, 218: 916.ADSCrossRefGoogle Scholar
  32. Kaune, W. T., Stevens, R. G., Callahan, N. J., Severson, R. K., and Thomas, D. B., 1987, Residential magnetic and electric fields, Bioelectromagnetics, 8: 315.CrossRefGoogle Scholar
  33. Keeton, W. T., 1971, Magnets interfere with pigeon homing, Proc. Natl. Acad. Sci. USA, 68: 102.Google Scholar
  34. Kirschvink, J. L. and Lowenstam, H. A., 1979, Mineralization and magneti-zation of chiton teeth: paleomagnetic, sedimentologic and biologic implications of organic magnetite, Earth Planet. Sci. Lett., 44: 193.Google Scholar
  35. Liboff, A. R., 1985, Geomagnetic cyclotron resonance in living cells, J. Biol.Phys. 13: 99.CrossRefGoogle Scholar
  36. Liboff, A. R. and McLeod, B. R., 1988, Kinetics of channelized membrane ions in magnetic fields, Bioelectromagnetics, 9: 39.CrossRefGoogle Scholar
  37. Liboff, A. R., Rozek, R. J., Sherman, M. L., McLeod, B. R., and Smith, S. D., 1987, Ca2+-45 cyclotron resonance in human lymphocytes, J. Bioelect., 6: 13.Google Scholar
  38. Liboff, R. L., 1980, Neuromagnetic thresholds, J. Theor. Biol., 83: 427.CrossRefGoogle Scholar
  39. Liburdy, R. L., Tenforde, T. S., and Magin, R. L., 1986, Magnetic field-induced drug permeability in liposome vesicles, Radiat. Res., 108: 102.CrossRefGoogle Scholar
  40. Lövsund, P., bberg, P. A., Nilsson, S. E. G., and Reuter, T., 1980a, Magnetophosphenes: a quantitative analysis of thresholds, Med. Biol. Engin. Comput., 18: 326.CrossRefGoogle Scholar
  41. Lövsund, P., Nilsson, S.E.G., and bberg, P. A., 1980b, Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity, Med. Biol. Engin. Comput., 19: 679.CrossRefGoogle Scholar
  42. Lövsund, P., Bberg, P. A., and Nilsson, S. E. G., 1980c, Magneto-and electrophosphenes: a comparative study, Med. Biol. Engin. Comput., 18: 758.CrossRefGoogle Scholar
  43. Lowenstam, H. A., 1962, Magnetite in denticle capping in recent chitons ( Polyplacophora ), Geol. Soc. Am. Bull., 73: 435.CrossRefGoogle Scholar
  44. Maffeo, S., Miller, M., and Carstensen, E. L., 1984, Lack of effect of weak low frequency electromagnetic fields on chick embryogenesis, J. Anat., 139: 613.Google Scholar
  45. Malinin, G. I., Gregory, W. D., Morelli, L., Sharma, V. K., and Houck,J. C., 1976, Evidence of morphological and physiological transforma-tion of mammalian cells by strong magnetic fields, Science, 194: 844.ADSCrossRefGoogle Scholar
  46. Maret, G. and Dransfeld, K., 1985, Biomolecules and polymers in high magnetic fields, Top. Appl. Phys., 57:143.CrossRefGoogle Scholar
  47. Haret, G., vonSchickfus, M., Mayer, A., and Dransfeld, K., 1975, Orientation of nucleic acids in high magnetic fields, Phys. Rev. Lett., 35: 397.ADSCrossRefGoogle Scholar
  48. Marsh, J. L., Armstrong, T. J., Jacobson, A. P., and Smith, R. G., 1982, Health effect of occupational exposure to steady magnetic fields, Am. Indust. Hyg. Assoc. J., 43: 387.CrossRefGoogle Scholar
  49. Martin, H. and Lindauer, M., 1977, The effects of the earth’s magnetic field on gravity orientation in the honeybee (Apis mellifica),J. Comp. Physiol., 122: 145.CrossRefGoogle Scholar
  50. McDowall, M. E., 1986, Mortality of persons resident in the vicinity of electricity transmission facilities, Br. J. Cancer, 53: 271.CrossRefGoogle Scholar
  51. McLeod, B. R. and Liboff, A. R., 1986, Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation, Bioelectromagnetics, 7: 177.CrossRefGoogle Scholar
  52. Melville, D., Paul, F., and Roath, S., 1975, Direct magnetic separation of red cells from whole blood, Nature, 255: 706.ADSCrossRefGoogle Scholar
  53. Michel-Beyerle, M. E., Scheer, H., Seidlitz, H., Tempus, D., and Haberkorn, R., 1979, Time-resolved magnetic field effect on triplet formation in photosynthetic reaction center of Rhodopseudomonas sphaeroides R-26, FEBS Lett., 100: 9.CrossRefGoogle Scholar
  54. Milham, S., Jr., 1982, Mortality from leukemia in workers exposed to electrical and magnetic fields, New Engl. J. Med., 307: 249.Google Scholar
  55. Mur, J. M., Moulin, J. J., Meyer-Bisch, C., Massin, N., Coulon, J. P., and Loulergue, J., 1987, Mortality of aluminum reduction plant workers in France, Int. J. Epidemiol., 16: 257.CrossRefGoogle Scholar
  56. Myers, A., Cartwright, R. A., Bonnell, J. A., Male, J. C., and Cartwright, S. C., 1985, Overhead power lines and childhood cancer, in: Abst.Int. Conf. Elec. Mag. Fields in Med. Biol., London, England, Dec. 4–5, 1985.Google Scholar
  57. Oberg, P. A., 1973, Magnetic stimulation of nerve tissue, Med. Biol. Engin., 11: 55.CrossRefGoogle Scholar
  58. Paul, F., Roath, S., and Melville, D., 1978, Differential blood cell separation using a high gradient magnetic field, Br. J. Hematol., 38: 273.CrossRefGoogle Scholar
  59. Petersen, N. vonDobeneck, T., and Vali, H., 1986, Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean, Nature, 320:611.ADSCrossRefGoogle Scholar
  60. Polson, M. J. R., Barker, A. T., and Freeston, I. L., 1982, Stimulation of nerve trunks with time-varying magnetic fields, Med. Biol. Engin. Comput., 20: 243.CrossRefGoogle Scholar
  61. Poynton, C. H., Dicke, K. A., Culbert, S., Frankel, L. S., Jagannath, S., and Reading, C. L., 1983, Immunomagnetic removal of CALLA positive cells from human bone marrow, Lancet, 1 (8323): 524.CrossRefGoogle Scholar
  62. Presti, D. and Pettigrew, J. D., 1980, Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals, Nature, 285: 99.ADSCrossRefGoogle Scholar
  63. Ratner, S. C., 1976, Kinetic movements in magnetic fields of chitons with ferromagnetic structures, Behay. Biol., 17: 573.CrossRefGoogle Scholar
  64. Rockette, H. E. and Arena, V. C., 1983, Mortality studies of aluminum reduction plant workers: potroom and carbon department, J. Occup. Med., 25: 549.Google Scholar
  65. Sander, R., Brinkmann, J., and Kuhne, B., 1982, Laboratory studies on animals and human beings exposed to 50 Hz electric and magnetic fields, in: Proc. Int. Cong. Large High Voltage Elect. Syst., Paper 36–01, Paris, Sept. 1–9, 1982.Google Scholar
  66. Savitz, D. A., 1986, Human health effects of extremely low frequency electromagnetic fields: critical review of clinical and epidemiological studies, pp. 49–64 in: “Proc. IEEE Power Engin. Soc. Panel Session on Biological Effects of Power Frequency Electric and Magnetic Fields,” Publ. No. 86TH0139–6-PWR, IEEE Service Center, Piscataway, New Jersey.Google Scholar
  67. Savitz, D. A. and Calle, E. E., 1987, Leukemia and occupational exposure to electromagnetic fields: review of epidemiological surveys,J. Occup. Med., 29: 47.Google Scholar
  68. Savitz, D. A., Wachtel, H., Barnes, F. A., John, E. M., and Tyrdik, J. G., 1987, Final results of case-control study of childhood cancer and electromagnetic field exposure, in: “Biological Effects from Electric and Magnetic Fields, Air Ions and Ion Currents Associated with High Voltage Transmission Lines,” Abst. Ann. DOE/EPRI Contractors ReviewGoogle Scholar
  69. Kansas City, Missouri, Nov. 2–5, 1987. Also available as Final Report: “Case-Control Study of Childhood Cancer and Exposure to Electromagnetic Fields,” New York State Power Lines Project, Health Research Inc., Albany, New York.Google Scholar
  70. Schulten, K., 1982, Magnetic field effects in chemistry and biology, pp. 61–83 in, Magnetic field effects in chemistry and biology, pp. 61–83 in: “Festkorperprobleme XXII: Advances in Solid State-Physics,” P. G. Aachen, ed., Proc. 46th Ann. Meeting German Phys. Soc., Mar. 29-Apr. 2, 1982.Google Scholar
  71. Schulten, K., Swenberg, C. E., and Waller, A., 1978, A biomagnetic sen-sory mechanism based on magnetic field modulated coherent electron spin motion, Zeit. Phys. Chem., 111: 1.CrossRefGoogle Scholar
  72. Schwartz, J.-L., 1978, Influence of a constant magnetic field on nervous tissues: I. Nerve conduction velocity studies, I.EE Trans. Biomed. Engin., BME-25: 467.Google Scholar
  73. Schwartz, J.-L., 1979, Influence of a constant magnetic field on nervous tissues: II. Voltage-clamp studies, IEEE Trans. Biomed. Engin., BME-26: 238.Google Scholar
  74. Silny, J., 1986, The influence threshold of the time-varying magnetic field in the human organism, pp. 105–115 in: “Biological Effects of Static and Extremely Low Frequency Magnetic Fields,” J. H. Bernhardt, ed., HMV Medizin Verlag, Munich, West Germany.Google Scholar
  75. Smith, S. D., McLeod, B. R., Liboff, A. R., and Cooksey, K., 1987, Calcium cyclotron resonance and diatom mobility, Bioelectromagnetics, 8: 215.CrossRefGoogle Scholar
  76. Sperber, D., Oldenbourg, E., and Dransfeld, K., 1984, Magnetic field in- duced temperature change in mice, Naturwissenschaften, 71: 100.ADSCrossRefGoogle Scholar
  77. Stevens, R. G., Severson, R. K., Kaune, W. T., and Thomas D. B., Epidemio-logical study of residential exposure to ELF electric and magnetic fields and risk of acute non-lymphocytic leukemia, in: “Biological Effects from Electric and Magnetic Fields, Air Ions and Ion Currents Associated with High Voltage Transmission Lines,” Abst. Ann. DOE/EPRI Contractors Review, Denver, Colorado, Nov. 18–20, 1986. Also avail-able as Final Report: “Epidemiological Studies of Cancer and Residen-tial Exposure to Electromagnetic Fields,” New York State Power Lines Project, Health Research Inc., Albany, New York.Google Scholar
  78. Stolz, J. F., Chang, S.-B. R., and Kirschvink, J. L., 1986, Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments, Nature, 321: 849.ADSCrossRefGoogle Scholar
  79. Tenforde, T. S., 1985a, Mechanisms for biological effects of magnetic fields, pp. 71–92 in: “Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields,” M. Grandolfo, S. M. Michaelson, and A. Rindi, eds., Plenum, New York.Google Scholar
  80. Tenforde, T. S., 1985b, Biological effects of stationary magnetic fields, pp. 93–127 in: “Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields,” M. Grandolfo, S. M. Michaelson, and A. Rindi, eds., Plenum, New York.Google Scholar
  81. Tenforde, T. S., 1986a, Thermoregulation in rodents exposed to high-intensity stationary magnetic fields, Bioelectromagnetics, 7: 341.CrossRefGoogle Scholar
  82. Tenforde, T. S., 1986b, Biological effects of extremely-low-frequency magnetic fields, pp. 21–40 in: “Proc. IEEE Power Engin. Soc. Panel Session on Biological Effects of Power Frequency Electric andoMag-netic Fields,” Publ. No. 86TH0139–6-PWR, IEEE Service Center, Piscataway, New Jersey.Google Scholar
  83. Tenforde, T. S., 1986c, Interaction of ELF magnetic fields with living matter, pp. 197–225 in: “CRC Handbook of Biological Effects of Electromagnetic Fields,” C. Polk and E. Postow, eds., CRC Press: Boca Raton, Florida.Google Scholar
  84. Tenforde, T. S., 1986d, Magnetic field applications in modern technology and medicine, pp. 23–35 in: “Biological Effects of Static and Extremely Low Frequency Magnetic Fields,” J. H. Bernhardt, ed., MMV Medizin Verlag, Munich, West Germany.Google Scholar
  85. Tenforde, T. S., 1988, Electroreception and magnetoreception in simple and complex organisms, Bioelectromagnetics, in press.Google Scholar
  86. Tenforde, T. S., and Budinger, T.F., 1986, Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy, pp. 493–548 in: “NMR in Medicine: Instrumentation and Clinical Applications,” S. R. Thomas and R. L. Dixon, eds., Medical Monograph No. 14, Amer. Assoc. Physicists in Med., New York.Google Scholar
  87. Tenforde, T. S., and Kaune, W. T., 1987, Interaction of extremely low frequency electric and magnetic fields with humans, Health Phys., 53: 585.CrossRefGoogle Scholar
  88. Tenforde, T. S., and Liburdy, R. P., 1988, Magnetic deformation of phospholipid bilayers: effects of liposome shape and solute permeability at prephase transition temperatures, J. Theor. Biol., in press.Google Scholar
  89. Tenforde, T. S., Gaffey, C. T., and Raybourn, M. S., 1985, Influence of stationary magnetic fields on ionic conduction processes, pp. 205–210 in: “Proc. 6th Symposium and Technical Exhibition on Elec-tromagnetic Compatibility,” T. Dvocâk, ed., Zurich, Switzerland, Mar. 5–7, 1985.Google Scholar
  90. Tenforde, T. S., Gaffey, C. T., Moyer, B. R., and Budinger, T. F., 1983, Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis, Bioelectromagnetics, 4: 1.CrossRefGoogle Scholar
  91. Thomas, J. R., Schrot, J., and Liboff, A. R., 1986, Low-intensity magnetic fields alter operant behavior in rats, Bioelectromagnetics, 7: 349.CrossRefGoogle Scholar
  92. Togawa, T., Okai, 0., and Oshima, M., 1967, Observation of blood flow E.M.F. in externally applied strong magnetic fields by surface electrodes, Med. Biol. Engin., 5: 169.CrossRefGoogle Scholar
  93. Tomenius, L., 1986, 50-Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County, Bioelectromagnetics, 7: 191.Google Scholar
  94. Ueno, S., Lövsund, P., and Öberg, P. A., 1978, Capacitive stimulatory effect in magnetic stimulation of nerve tissue, IEEE Trans. Mag., MAG-14: 958.Google Scholar
  95. Ueno, S., Harada, K., Ji, C., and Oomura, Y., 1984, Magnetic nerve stimulation without interlinkage between nerve and magnetic flux, IEEE Trans. Mag., MAG-20: 1660.Google Scholar
  96. Vyalov, A. M., 1974, Clinico-hygienic and experimental data on the effects of magnetic fields under industrial conditions, pp. 163–174 in: “Influence of Magnetic Fields on Biological Objects,” Y. A. Kholodov, ed., Rep. No. JPRS 63038 National Technical Information Service, Springfield, Virginia.Google Scholar
  97. Walcott, C., Gould, J. L., and Kirschvink, J. L., 1979, Pigeons have magnets, Science, 205: 1027.ADSCrossRefGoogle Scholar
  98. Wertheimer, N. and Leeper, E., 1979, Electrical wiring configurations and childhood cancer, Am. J. Epidemiol., 109: 273.Google Scholar
  99. Wertheimer, N. and Leeper, E., 1980, Re: Electrical wiring configurations and childhood leukemia in Rhode Island, Am. J. Epidemiol., 111:461.Google Scholar
  100. Wertheimer, N. and Leeper, E., 1982, Adult cancer related to electrical wires near the home, Int. J. Epidemiol., 11:345.Google Scholar
  101. Wertheimer, N. and Leeper, E., 1986, Possible effects of electric blankets and heated waterbeds on fetal development, Bioelectromagnetics, 7:13.Google Scholar
  102. Widder, K. J., Senyei, A. E., and Sears, B., 1982, Experimental methods in cancer therapeutics, J. Pharm. Sci., 71: 379.CrossRefGoogle Scholar
  103. Wikswo, J. P. and Barach, J. P., 1980, An estimate of the steady magnetic field strength required to influence nerve conduction, IEEE Trans. Biomed. Engin., BME-27: 722.Google Scholar
  104. Yorke, E. D., 1981, Sensitivity of pigeons to small magnetic field varia-tions, J. Theor. Biol.89,533.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. S. Tenforde
    • 1
  1. 1.Research Medicine and Radiation Biophysics Division Lawrence Berkeley LaboratoryUniversity of California BerkeleyCaliforniaUSA

Personalised recommendations