Biosynthesis of Iso-Chorismate-Derived Quinones

  • Eckhard Leistner
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 20)


Recent reviews on quinones have concentrated on different aspects of their biology and chemistry. The biosynthesis, ecology and toxicology of quinones are treated1 in a book edited by Higuchi. An article2 on the biosynthesis of chorismate-derived quinones refers to work on quinone-producing plant cell cultures. It is demonstrated that there are quite a few quinones which are produced in cell cultures in rather large amounts. This is amazing for two reasons: firstly, secondary plant products are quite often produced in rather small amounts in cell cultures and secondly, quinones originate from very different biosynthetic precursors such as acetate or phenylalanine, tyrosine and/or mevalonic acid. Thus the observation that quinones are produced in rather large amounts in cell cultures is unlikely to be due to a single regulatory phenomenon. The different biosynthetic pathways leading to quinones are outlined in another review.3 Work on the biosynthesis of vitamin K is most advanced when compared to the investigation of the biosynthesis of other quinones.4


Cell Suspension Culture Shikimic Acid Mevalonic Acid Succinic Semialdehyde Thiamine Pyrophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leistner, E. 1985. Occurrence and biosynthesis of quinones in woody plants. In Biosynthesis and Biodegradation of Wood Components. (T. Higuchi, ed.), Academic Press, New York, pp. 273–290.Google Scholar
  2. 2.
    Leistner, E. 1985. Biosynthesis of chorismate-derived quinones in plant cell cultures. In Primary and Secondary Metabolism of Plant Cell Cultures. (K.-H. Neumann, W. Barz, E. Reinhard, eds.), Springer, Berlin, Heidelberg, pp. 215–224.CrossRefGoogle Scholar
  3. 3.
    Leistner, E. 1981. Biosynthesis of plant quinones. In The Biochemistry of Plants. (E.E. Conn, ed.), Vol. 7, Academic Press, New York, pp. 403–423.Google Scholar
  4. 4.
    Bentley, R., R. Meganathan. 1981. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Rev. 46: 241–280.Google Scholar
  5. 5.
    Weische, A., E. Leistner. 1985. Cell-free synthesis of o-succinylbenzoic acid from iso-chorismic acid, the key reaction in vitamin K2 (menaquinone) biosynthesis. Tetrahedron Lett. 26: 1487–1490.CrossRefGoogle Scholar
  6. 6.
    Young, I.G. 1975. Biosynthesis of bacterial menaqui-nones: menaquinone mutants of Escherichia coli. Biochemistry 14: 399–406.CrossRefGoogle Scholar
  7. 7.
    Heide, L., S. Arendt, E. Leistner. 1982. Enzymatic synthesis, characterization, and metabolism of the coenzyme A ester of o-succinylbenzoic acid, an intermediate in menaquinone (vitamin K2) biosynthesis. J. Biol. Chem. 257: 7396–7400.Google Scholar
  8. 8.
    Young, I.G., T.J. Batterham, F. Gibson. 1969. The isolation, identification and properties of iso-chorismic acid, an intermediate in the biosynthesis of 2,3-dihydroxybenzoic acid. Biochim. Biophys. Acta 177: 389–400.CrossRefGoogle Scholar
  9. 9.
    Haslam, E. 1974. The Shikimate Pathway, Butter-worths, London, 316 pp.Google Scholar
  10. 10.
    Dansette, P., R. Azerad. 1970. A new intermediate in naphthoquinone and menaquinone biosynthesis. Biochem. Biophys. Res. Commun. 40: 1090–1095.Google Scholar
  11. 11.
    Weische, A., W. Leistner, unpublished.Google Scholar
  12. 12.
    Meganathan, R., R. Bentley. 1983. Thiamine pyrophos-phate requirement for o-succinylbenzoic acid synthesis in Escherichia coli and evidence for an intermediate. J. Bacteriol. 153: 739–746.Google Scholar
  13. 13.
    Kolkmann, R., G. Knauel, S. Arendt, E. Leistner. 1982. Site of activation of o-succinylbenzoic acid during its conversion to menaquinones (vitamin K2). FEBS Lett. 137: 53–56.CrossRefGoogle Scholar
  14. 14.
    Kolkmann, R., E. Leistner. 1985. Synthesis and revised structure of the o-succinylbenzoic acid coenzyme A ester, an intermediate in menaquinone biosynthesis. Tetrahedron Lett. 26: 1703–1704.CrossRefGoogle Scholar
  15. 15.
    Leete, E., G.B. Bodem. 1976. Biosynthesis of shihunine in Dendrobium pierardii. J. Am. Chem. Soc. 98: 6321–6325.CrossRefGoogle Scholar
  16. 16.
    Saito, Y., K. Ogura. 1981. Biosynthesis of menaqui-nones. Enzymatic prenylation of 1,4-dihydroxy-2-naphthoate by Micrococcus luteus membrane fractions. J. Biochem. (Tokyo) 89: 1445–1452.Google Scholar
  17. 17.
    Samuel, O., R. Azerad. 1972. C-méthylation des desméthylménaquinones: II. Spécificité du système enzymatique de méthylation de Mycobacterium phlei vis-à-vis du substrat quinonique. Biochimie 54: 305–317.CrossRefGoogle Scholar
  18. 18.
    Kaiping, A., J. Soll, G. Schultz. 1984. Site of methylation of 2-phythyl-1,4-naphthoquinol in phylloquinone (vitamin K1) synthesis in spinach chloroplasts. Phytochemistry 23: 89–91.CrossRefGoogle Scholar
  19. 19.
    Gaudilliere, J.-P., A. D’Harlingue, B. Camara, R. Moneger. 1984. Prenylation and methylation reactions in phylloquinone (vitamin Ki) synthesis in Capsicum annuum plastids. Plant Cell Rep. 3: 240–242.CrossRefGoogle Scholar
  20. 20.
    Igbavboa, U., H.-J. Sieweke, E. Leistner, J. Röwer, W. Hüsemann, W. Barz. 1985. Alternative formation of anthraquinones and lipoquinones in heterotrophic and photoautotrophic cell suspension of Morinda lucida Benth. Planta, submitted.Google Scholar
  21. 21.
    Zenk, M.H., H. El-Shagi, U. Schulte. 1975. Anthra-quinone production by cell suspension cultures of Morinda citrifolia. Planta medica, Supplement, 79–101.Google Scholar
  22. 22.
    Zenk, M.H., U. Schulte, H. El-Shagi. 1984. Regula-tion of anthraquinone formation by phenoxyacetic acids in Morinda cell cultures. Naturwissenschaften 71: 266.CrossRefGoogle Scholar
  23. 23.
    El-Shagi, H., U. Schulte, M.H. Zenk. 1984. Specific inhibition of anthraquinone formation by amino compounds in Morinda cell cultures. Naturwissenschaften 71: 267.CrossRefGoogle Scholar
  24. 24.
    Bauch, H.-J., E. Leistner. 1978. Aromatic metabo-lites in cell suspension cultures of Galium mollugo L. Planta medica 33: 105.CrossRefGoogle Scholar
  25. 25.
    Schulte, U., H. El-Shagi, M.H. Zenk. 1984. Optimi-zation of 19 Rubiaceae species in cell cultures for the production of anthraquinones. Plant Cell Rep. 3: 51.CrossRefGoogle Scholar
  26. 26.
    Leistner, E. 1975. Isolierung, Identifizierung und Biosynthese von Anthrachinonen in Zellsuspension-skulturen von Morinda citrifolia. Plant medica, Supplement, 214–224.Google Scholar
  27. 27.
    Bauch, H.-J., E. Leistner. 1978. Attempts to demonstrate incorporation of labelled precursors into aromatic metabolites in cell suspension cultures of Galium mollugo L. Planta medica 33: 124–127.CrossRefGoogle Scholar
  28. 28.
    Inoue, K., Y. Shiobara, H. Nayeshiro, H. Inouye, G. Wilson, M.H. Zenk. 1979. Site of prenylation in anthraquinone biosynthesis in cell suspension of Galium mollugo. J. Chem. Soc., Chem. Commun., 957–959.Google Scholar
  29. 29.
    Inoue, K., Y. Shiobara, H. Nayeshiro, H. Inouye, G. Wilson, M.H. Zenk. 1984. Biosynthesis of anthra-quinones and related compounds in Galium mollugo cell suspension cultures. Phytochemistry 23: 307–311.CrossRefGoogle Scholar
  30. 30.
    Heide, L., E. Leistner. 1981. 2-Methoxycarbonyl-3-prenyl-l,4-naphthoquinone, a metabolite related to the biosynthesis of mollugin and anthraquinones in Galium mollugo L. J. Chem. Soc., Chem. Commun., 334–336.Google Scholar
  31. 31.
    Heide, L., E. Leistner. 1982. Versuche zur Synthese natürlich vorkommender prenylierter Naphthalinderivate. Nachweis eines neuen Prenylchinonderivates in Galium mollugo. Z. Naturforsch. 37C: 354–362.Google Scholar
  32. 32.
    Heide, L., E. Leistner. 1983. Enzyme activities in extracts of anthraquinone-containing cells of Galium mollugo. Phytochemistry 22: 659–662.CrossRefGoogle Scholar
  33. 33.
    Heide, L., R. Kolkmann, S. Arendt, E. Leistner. 1982. Enzymic synthesis of o-succinylbenzoyl-CoA in cell-free extracts of anthraquinone producing Galium mollugo L. cell suspension cultures. Plant Cell Rep. 1: 180–182.CrossRefGoogle Scholar
  34. 34.
    Inoue, K., S. Ueda, Y. Shiobara, J. Kimura, H. Inouye. 1981. Quinones and related compounds in higher plants. Part 11. Role of 2-carboxy-2,3-dihydro-1,4-naphthoquinone and 2-carboxy-2-(3-methyl-but-2-enyl)-2,3-dihydro-1,4-naphthoquinone in the biosynthesis of naphthoquinone congeners of Catalpa ovata callus tissue. J. Chem. Soc., Perkin Trans. I, 1246–1258.CrossRefGoogle Scholar
  35. 35.
    Ueda, S., K. Inoue, T. Hayashi, H. Inouye. 1975. Zur Biosynthese des Catalponols und artverwandter Stoffe. Tetrahedron Lett., 2399–2401.Google Scholar
  36. 36.
    Stöckigt, J., U. Srocka, M.H. Zenk. 1973. Structure and biosynthesis of a new anthraquinone from Streptocarpus dunnii. Phytochemistry 12: 2389–2391.CrossRefGoogle Scholar
  37. 37.
    Inoue, K., S. Ueda, H. Nayeshiro, H. Inouye. 1983. Quinones of Streptocarpus dunnii. Phytochemistry 22: 737–741.CrossRefGoogle Scholar
  38. 38.
    Inoue, K., S. Ueda, H. Nayeshiro, H. Inouye. 1982. Biosynthesis of quinones of Streptocarpus dunnii cell cultures. J. Chem. Soc., Chem. Commun., 993–994.Google Scholar
  39. 39.
    Inoue, K., S. Ueda, H. Nayeshiro, N. Moritone, H. Inouye. 1984. Biosynthesis of naphthoquinones and anthraquinones in Streptocarpus dunnii cell cultures. Phytochemistry 23: 313–318.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Eckhard Leistner
    • 1
  1. 1.Institut für Pharmazeutische Biologie53 Bonn 1West Germany

Personalised recommendations