Hydroxybenzoic Acids and the Enigma of Gallic Acid

  • Edwin Haslam
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 20)


“Esters and/or glycosides of a variety of substituted benzoic acids are found in all higher plants.” Examining the veracity of this statement1 brings one in mind of Oscar Wilde’s aphorism concerning truth — that it is never pure and rarely simple. Certainly C6-C1 phenolic acids occur widely in plants and also microorganisms. Some plant species are particularly rich in these compounds — for example1 the leaves of winter-green (Gaultheria procumbens), extracts of which upon alkaline hydrolysis yield p-hydroxy-benzoic (2) , salicylic (4), protocatechuic (6), 2,3-dihydroxybenzoic ( 5 ), gentisic (9), vanillic ( 7 ) and syringic (8) acids (Fig. 1). Although metabolites containing these functionalities are widely distributed in angiosperms (in the botanical sense), according to the extent literature, their occurrence is nevertheless sporadic and often appears to constitute something of a taxonomic speciality. In this respect the most familiar example is probably the willow family (Salicaceae) in which derivatives of salicylic acid, such as the ω-salicylsalicin metabolites (11–13) isolated from Salix purpurea bark,2 are found. Hydroxybenzoic acids, their analogues, and significantly benzoic acid (1) itself are also consistently located esterified to both terpenoid and alkaloid structures throughout the plant kingdom. The metabolites (Fig. 2, 11–25) typically illustrate the breadth and diversity of this mode of occurrence.3–8 In view of the later biosynthetic discussions particular note should be made of the β-aminophenylalanine ester group in taxol (23).


Gallic Acid Fast Atom Bombardment Oxidative Coupling Anthranilic Acid HYDROXYBENZOIC Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    TOWERS, G.H.N. 1964. Metabolism of phenolic acids in higher plants and microorganisms. In. Biochemistry of Phenolic Compounds. (J.B. Harborne, ed.), Academic Press, London and New York, pp. 249–294.Google Scholar
  2. 2.
    PEARL, I.A., S.F. DARLING. 1970. Phenolic extractives of Salix purpurea bark. Phytochemistry 9: 1277–1281.CrossRefGoogle Scholar
  3. 3.
    CHALLICE, J.S., A.H. WILLIAMS. 1968. Phenolic compounds of the genus Pyrus I. The occurrence of flavones and phenolic acid derivatives of 3,4-dihydroxybenzyl alcohol 4-glucoside in Pyrus calleryana. Phytochemistry 7: 119–130.CrossRefGoogle Scholar
  4. 4.
    CHALLICE, J.S. 1973. Phenolic compounds of the genus Pyrus VI. Distribution of phenols in Pyrus stem. J. Sci. Food Agric. 24: 285–293.CrossRefGoogle Scholar
  5. 5.
    BOBBITT, J.M., D.W. SPIGGLE, S. MAHBOOB, W. VON PHILLIPSBORN, H. SCHMID. 1962. Catalpa glycosides II. The structure of catalposide. Tetrahedron Lett., 521–529.Google Scholar
  6. 6.
    WEINGES, K., P. KLOSS, W.D. HENKELS. 1972. Picroside II, ein neues 6-vanilloyl catalpol aus Picrorhiza kurooa. Liebig’s Ann. Chem. 759: 173–182.Google Scholar
  7. 7.
    PELLETIER, S.W., L.H. KEITH. 1970. Diterpene alka-loids from Aconitum, Delphinium and Garrya species: the C19-diterpene alkaloids. In The Alkaloids. (R.H.F. Manske, ed.), Vol. 12, Academic Press, London and New York, pp. 1–134.Google Scholar
  8. 8.
    WANI, M.S., H.L. TAYLOR, M.E. WALL, P. COGGON, A.T. MCPHAIL. 1971. Antitumour agents VI. The isolation and structure of taxol, a novel antileukemic and antitumour agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325–2327.CrossRefGoogle Scholar
  9. 9.
    HASLAM, E. 1974. The Shikimate Pathway, Butterworths, London, 316 pp.Google Scholar
  10. 10.
    WEISS, U., J.M. EDWARDS. 1980. The Biosynthesis of Aromatic Compounds. Wiley-Interscience, New York -Chichester, 728 pp.Google Scholar
  11. 11.
    GIBSON, F., C.H. DOY, A.J. PITTARD. 1962. Possible relationship between o-dihydroxyphenols and tryptophan synthesis by Aerobacter aerogenes. Biochim. Biophys. Acta 57: 290–295.CrossRefGoogle Scholar
  12. 12.
    HASLAM, E. 1982. The metabolism of gallic acid and hexahydroxydiphenic acids in higher plants. Fortschr. Chem. Org. Naturst. 41: 1–46.Google Scholar
  13. 13.
    BATE-SMITH, E.C. 1962. The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. Linn. Soc. London Bot. J. 58: 95–173.CrossRefGoogle Scholar
  14. 14.
    HADDOCK E.A., R.K. GUPTA, S.M.K. AL-SHAFI, K. LAYDEN, E. HASLAM, D. MAGNOLATO. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Biogenetic and molecular taxonomic considerations. Phytochemistry 22: 1049–1062.CrossRefGoogle Scholar
  15. 15.
    NISHIZAWA, M., T. YAMAGISHI, G. NONAKA, I. NISHIOKA, M. RAGAN. 1985. Gallotannins of the freshwater green alga Spirogyra sp. Phytochemistry 24: 2411–2413.CrossRefGoogle Scholar
  16. 16.
    HASLAM, E. 1981. Vegetable tannins. In The Biochemistry of Plants. (E.E. Conn, ed), Vol. 7, Academic Press, London and New York, pp. 527–554.Google Scholar
  17. 17.
    SCHILDKNECHT, H. 1983. Turgorins, hormones of the endogenous daily rhythms of higher organized plants — detection, isolation, structure, synthesis and activity. Angew. Chem. Int. Ed. Engl. 22: 695–710.CrossRefGoogle Scholar
  18. 18.
    JENSEN, R.A., D.L. PIERSON. 1975. Evolutionary impli-cations of different types of microbial enzymology for L-tyrosine biosynthesis. Nature 254: 667–671.CrossRefGoogle Scholar
  19. 19.
    ZENK, M.H. 1971. Metabolism of prearomatic and aromatic compounds in plants. In Pharmacognosy and Phytochemistry. (H. Wagner, L. Horhammer, eds.), Springer-Verlag, Berlin-Heidelberg-New York, pp. 314–346.CrossRefGoogle Scholar
  20. 20.
    FLOSS, H.G., M.H. ZENK, D.K. ONDERKA, M. CARROLL, K.H. SCHARF. 1971. Stereochemistry of the enzymatic and non-enzymatic conversion of 3-dehydroshikimate into protocatechuate. J. Chem. Soc., Chem. Commun., 765–766.Google Scholar
  21. 21.
    O’BRIEN, I.G., F. GIBSON. 1970. The structure of enterochelin and related 2,3-dihydroxybenzoyl-serine conjugates from Escherichia coli. Biochim. Biophys. Acta 215: 393–402.CrossRefGoogle Scholar
  22. 22.
    RATLEDGE, C. 1966. Biosynthesis of salicylic acid by Mycobacterium smegmatis. In Biosynthesis of Aromatic Compounds. (G. Billek, ed.), Pergamon, Oxford, pp. 61–66.Google Scholar
  23. 23.
    MARSHALL, B.J., C. RATLEDGE. 1972. Salicylic acid biosynthesis in Mycobacterium smegmatis. Biochim. Biophys. Acta 264: 106–116.CrossRefGoogle Scholar
  24. 24.
    ZENK, M.H., G. MULLER. 1964. Biosynthese von p-Hydroxybenzoesaure und andere Benzoesauren in hoheren Pflanzen. Z. Naturforsch. 198: 398–405.Google Scholar
  25. 25.
    ZENK, M.H. 1979. Recent work on cinnamoyl-CoA derivatives. In Biochemistry of Plant Phenolics. (T. Swain, J.B. Harborne, C.F. van Sumere, eds.), Plenum Press, London and New York, pp. 139–176.Google Scholar
  26. 26.
    KINDL, H., W. LOFFELHARDT. 1975. The conversion of L-phenylalanine into benzoic acid on the thylakoid membrane of higher plants. Hoppe-Seyler’s Z. Physiol. Chem. 356: 21–28.CrossRefGoogle Scholar
  27. 27.
    BARKER, H.A. 1981. Amino-acid degradation by anae-robic bacteria. Ann. Rev. Biochem. 50: 23–40.CrossRefGoogle Scholar
  28. 28.
    ZENK, M.H. 1964. Zur Frage der Biosynthese von Gallussaure. Z. Naturforsch. 19B: 83–84.Google Scholar
  29. 29.
    NEISH, A.C., G.H.N. TOWERS, D. CHEN. S.Z. EL-BASYOUNI, R.K. IBRAHIM. 1964. The biosynthesis of hydroxy-benzoic acids. Phytochemistry 3: 485–492.CrossRefGoogle Scholar
  30. 30.
    KNOWLES, P.F., R.D. HAWORTH, E. HASLAM. 1961. Gallotannins 4. The biosynthesis of gallic acid. J. Chem. Soc., 1854–1859.Google Scholar
  31. 31.
    CONN, E.E., T. SWAIN. 1961. Biosynthesis of gallic acid in higher plants. Chem. and Ind., 592–593.Google Scholar
  32. 32.
    CORNTHWAITE, D.C., E. HASLAM. 1965. Gallotannins 9. The biosynthesis of gallic acid in Rhus typina. J. Chem. Soc. (C), 3008–3011.CrossRefGoogle Scholar
  33. 33.
    DEWICK, P.M., E. HASLAM. 1969. Phenol biosynthesis in higher plants — gallic acid. Biochem. J. 113: 537–542.Google Scholar
  34. 34.
    SAIJO, R. 1983. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agric. Biol. Chem. 47: 455–460.CrossRefGoogle Scholar
  35. 35.
    BRUCKER, W., M. HASHEM. 1962. Zur Phenolkarbonsaure-bildung von Phycomyces aus Shikimisaure — 14C. Flora 152: 57–67.Google Scholar
  36. 36.
    GROSS, S.R. 1982. Synthesis of galloyl coenzyme A thiol ester. Z. Naturforsch. 37C: 778–783.Google Scholar
  37. 37.
    GROSS, S.R. 1983. Synthesis of mono-, di- and tri-galloyl-β-D-glucogallin dependent galloyl transferases from oak leaves. Z. Naturforsch. 38C: 519–523.Google Scholar
  38. 38.
    SCHMIDT, O.TH., W. MAYER. 1956. Naturliche Gerbstoffe. Angew. Chem. 68: 103–105.CrossRefGoogle Scholar
  39. 39.
    SCHMIDT, O.TH., J. SCHULZ, H. FEISSER. 1967. Die Gerbstoffe der Myrabolanen. Liebig’s Ann. Chem. 706: 187–197.Google Scholar
  40. 40.
    OKUDA, T., T. YOSHIDA, T. HATANO. 1982. Constituents of Geranium thunbergii. J. Chem. Soc., Perkin Trans. I, 9–14.CrossRefGoogle Scholar
  41. 41.
    HASLAM, E., E.A. HADDOCK, R.K. GUPTA, S.M.K. AL-SHAFI, D. MAGNOLATO. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 1. Naturally occurring galloyl esters. J. Chem. Soc. Perkin Trans. I, 2515–2524.Google Scholar
  42. 42.
    HASLAM, E., R.K. GUPTA, S.M.K. AL-SHAFI, K. LAYDEN. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2. Esters of (S)-hexahydroxydiphenic acid with D-glucopyranose (4C1). J. Chem. Soc., Perkin Trans. I, 2525–2534.Google Scholar
  43. 43.
    HASLAM, E., E.A. HADDOCK, R.K. GUPTA. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 3. Esters of (R) and (S)-hexahydroxydiphenic acid and dehydrohydroxydiphenic acid with D-glucopyranose (1C4 and related conformations). J. Chem. Soc., Perkin Trans. I, 2535–2545.Google Scholar
  44. 44.
    SURMAN, D.J., J.C. VICKERMAN. 1981. Fast atom bombardment quadruple mass spectrometry. J. Chem. Soc., Chem. Commun., 324–325.Google Scholar
  45. 45.
    BARBER, M. , R.S. BORDOLI, R.D. SEDGWICK, A.N. TYLER. 1981. Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry. J. Chem. Soc., Chem. Commun., 325–327.Google Scholar
  46. 46.
    HILLIS, W.E., M. SIEKEL. 1970. Hydrolysable tannins of Eucalyptus delegatensis wood. Phytochemistry 9: 1115–1128.CrossRefGoogle Scholar
  47. 47.
    JOCHIMS, J.C., G. TAIGEL, O.TH. SCHMIDT. 1968. Protonresonanz- Spectrum und Konformations bestimmung einiger naturlicher Gerbstoffe. Liebig’s Ann. Chem. 717: 169–185.Google Scholar
  48. 48.
    OKUDA, T., T. YOSHIDA, T. HATANO, T. KOGA, N. TOH, N. KURIYAMA. 1982. Circular dichroism of hydro-lysable tannins-I. Ellagitannins and gallotannins. Tetrahedron Lett. 23: 3937–3940.CrossRefGoogle Scholar
  49. 49.
    OKUDA, T., T. YOSHIDA, T. HATANO, T. KOGA, N. TOH, N. KURIYAMA. 1982. Circular dichroism of hydrolysable tannins-II. Ellagitannins and gallotannins. Tetrahedron Lett. 23: 3941–3944.CrossRefGoogle Scholar
  50. 50.
    SCHMIDT, O.TH., R. SCHANZ, R. ECKERT, R. WURMB. 1967. Brevilagin I. Liebig’s Ann. Chem. 706: 131–153.Google Scholar
  51. 51.
    SCHMIDT, O.TH., R. SCHANZ, R. WURMB, W. GROEBKE. 1967. Brevilagin 2. Liebig’s Ann. Chem. 706: 154–168.Google Scholar
  52. 52.
    HASLAM, E. 1966. Chemistry of Vegetable Tannins, Academic Press, London and New York, 179 pp.Google Scholar
  53. 53.
    NISHIOKA, I., G. NONAKA, M. NISHIZAWA, T. YAMAGISHI. 1982. Tannins and related compounds. Part 5. Structure of Chinese gallotannin. J. Chem. Soc. Perkin Trans. 1, 2963–2968.Google Scholar
  54. 54.
    FISCHER, E. 1919. Untersuchungen uber Depside und Gerbstoffe, Springer-Verlag, Berlin, 541 pp.CrossRefGoogle Scholar
  55. 55.
    JURD, L. 1958. Plant polyphenols III. The isolation of a new ellagitannin from the pellicle of the walnut. J. Am. Chem. Soc. 80: 2249–2252.CrossRefGoogle Scholar
  56. 56.
    WILKINS, C.K., B.A. BOHM. 1976. Ellagitannins from Tellima grandiflora. Phytochemistry 15: 211–214.CrossRefGoogle Scholar
  57. 57.
    SCHMIDT, O.TH., L. WURTELE, A. HARREUS. 1965, Pedunculagin, eine 2,3:4,6-Di-(-) hexahydroxydi-phenoyl — glucose aus Knoppern. Liebig’s Ann. Chem. 690: 150–162.Google Scholar
  58. 58.
    OKUDA, T., T. YOSHIDA, M. USMAN-MEMON, T. SHINGU. 1982. Structure of gemin A, a new dimeric ellagitannin having a- and β-glucose cores. J. Chem. Soc., Chem. Commun, 351–353.Google Scholar
  59. 59.
    MAYER, W. 1954. Dehydrodigallusaure. Liebigfs Ann. Chem. 578: 34–44.Google Scholar
  60. 60.
    OKUDA, T., T. YOSHIDA, Y. MARUYAMA, M. USMAN-MEMON, T. SHINGU. 1982. Gemin B and C., dimeric ellagitannins from Geum japonicum. Chem. Parm. Bull. 30: 4245–4248.CrossRefGoogle Scholar
  61. 61.
    OKUDA, T., T. HATANO, K. YAZAKI, N. OGAWA. 1982. Rugosin A, B and C and praecoxin A, tannins having a valoneoyl group. Chem. Pharm. Bull. 30: 4230–4234.CrossRefGoogle Scholar
  62. 62.
    OKUDA, T., T. HATANO, N. OGAWA. 1982. Rugosin D. E, R and G, dimeric and trimeric hydrolysable tannins. Chem. Pharm. Bull. 30: 4234–4237.CrossRefGoogle Scholar
  63. 63.
    MAYER, W., F. KULLMAN, G. SCHILLING. 1971. Die Struktur des Vescalins. Liebig’s Ann. Chem. 747: 51–59.Google Scholar
  64. 64.
    MAYER, W., H. SEITZ, J.C. JOCHIMS, K. SCHAUERTS, G. SCHILLING. 1971. Struktur des Vescalagins. Liebig’s Ann. Chem. 751: 60–68.Google Scholar
  65. 65.
    OKUDA, T., T. HATANO, T. YOSHIDA, K. YAZAKI, M. ACHIDA. 1982. Ellagitannins of the Casuarinaceae, Stachyuraceae and Myrtaceae. Phytochemistry 21: 2871–2874.CrossRefGoogle Scholar
  66. 66.
    MCMANUS, J.P., K.G. DAVIS, J.E. BEART, S.H. GAFFNEY, T.H. LILLEY, E. HASLAM. 1985. Polyphenol interactions. Part 1. Introduction; some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc., Perkin Trans. II, 1429–1438.Google Scholar
  67. 67.
    BEART, J.E., T.H. LILLEY, E. HASLAM. 1985. Poly-phenol interactions. Part 2. Covalent binding of procyanidins to proteins during acid-catalyzed decomposition; observations on some polymeric proanthocyanidins. J. Chem. Soc., Perkin Trans. II, 1439–1443.Google Scholar
  68. 68.
    HAGERMAN, A.E., L.G. BUTLER. 1981. The specificity of proanthocyanidin protein interactions. J. Biol. Chem. 256: 4494–4497.Google Scholar
  69. 69.
    HAGERMAN, A.E., L.G. BUTLER. 1980. Condensed tannin purification and characterization of tannin-associated proteins. J. Agric. Food Chem. 28: 947–952.CrossRefGoogle Scholar
  70. 70.
    FEENY, P.P. 1976. Plant apparency and chemical defence. Recent Adv. Phytochem. 10: 1–40.Google Scholar
  71. 71.
    RHOADES, D.F. 1979. Evolution of plant chemical defence against herbivores. In Herbivores -Their Interactions with Secondary Plant Metabolites. (G.A. Rosenthal, D.H. Janzen, eds.), Academic Press, London and New York, pp. 3–54.Google Scholar
  72. 72.
    BEART, J.E., T.H. LILLEY, E. HASLAM. 1985. Plant polyphenols — secondary metabolism and chemical defence — some observations. Phytochemistry 24: 33–38.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Edwin Haslam
    • 1
  1. 1.Department of ChemistryThe University of SheffieldSheffieldUK

Personalised recommendations