Skip to main content

Indoleacetic Acid, its Synthesis and Regulation: A Basis for Tumorigenicity in Plant Disease

  • Chapter
The Shikimic Acid Pathway

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 20))

Abstract

The multibranched shikimic acid pathway provides the intermediates for the synthesis of the three amino acids phenylalanine, tyrosine and tryptophan in microorganisms and plants. In plants, these three amino acids are precursors for a variety of secondary metabolites such as alkaloids, coumarins, flavonoids, lignin precursors, indole derivatives and numerous phenolic compounds (Fig. 1). The role of the aromatic amino acids in protein synthesis is well known as is the role of indoleacetic acid in plant development; however, the function of the various secondary products is much less clear. Various physiological roles have been proposed including pest resistance, chromagens in flowers and fruits, and precursors for the structural component, lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LEISINGER, T., R. MARGRAFF. 1979. Secondary metabolites of the fluorescent Pseudomonads. Microbiol, Rev. 43: 422–442.

    CAS  Google Scholar 

  2. SKOOG, F., C.O. MILLER. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Soc. Exp. Biol. Symp. 11: 118–131.

    CAS  Google Scholar 

  3. BRAUN, A.C. 1958. A physiological basis for autonomous growth of the crown gall tumor cell. Proc. Natl. Acad. Sci. USA 44: 344–349.

    Article  CAS  Google Scholar 

  4. GELVIN, S.B. 1984. Plant tumorigenesis. In Plant-Microbe Interactions — Molecular and Genetic Perspectives. (T. Kosuge, E.W. Nester, eds.), MacMillan Inc., New York, pp. 243–377.

    Google Scholar 

  5. GARFINKLE, D.J., E.W. NESTER. 1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144: 732–743.

    Google Scholar 

  6. AKIYOSHI, D.E., R.O. MORRIS, R. HINZ, B.S. MISCHKE, T. KOSUGE, D.J. GARFINKEL, M.P. GORDON, E.W. NESTER. 1983. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80: 407–411.

    Article  CAS  Google Scholar 

  7. SMIDT, M., T. KOSUGE. 1978. The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol. Plant Pathol. 13: 203–214.

    Article  CAS  Google Scholar 

  8. COMAI, L., T. KOSUGE. 1980. Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J. Bacteriol. 143: 950–957.

    CAS  Google Scholar 

  9. COMAI, L., T. KOSUGE. 1982. Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J. Bacteriol. 149: 40–46.

    CAS  Google Scholar 

  10. COMAI, L., T. KOSUGE. 1983. The genetics of indoleacetic acid production and virulence in Pseudomonas savastanoi. In Molecular Genetics of the Bacteria-Plant Interactions. (A. Puhler, ed.), Springer-Verlag, Berlin, pp. 363–366.

    Google Scholar 

  11. COMAI, L., G. SURICO, T. KOSUGE. 1982. Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv savastanoi. J. Gen. Microbiol. 128: 2157–2163.

    CAS  Google Scholar 

  12. COMAI, L., T. KOSUGE. 1983. Transposable element that causes mutations in a plant pathogenic Pseudomonas sp. J. Bacteriol. 154: 1162–1167.

    CAS  Google Scholar 

  13. HUTCHESON, S.W., T. KOSUGE. 1985. Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv savastanoi. J. Biol. Chem. 260: 6281–6287.

    CAS  Google Scholar 

  14. KOSUGE, T., M.G. HESKETT, E.E. WILSON. 1966. Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J. Biol. Chem. 241: 3738–3744.

    Google Scholar 

  15. CHANDLER, M., D.J. GALAS. 1985. Studies on the transposition of IA1. In Plasmids in Bacteria. (D.R. Helinski, S.N. Cohen, D.B. Clewell, D.A. Jackson, A. Hollaender, eds.), Plenum Press, New York, pp. 53–77.

    Chapter  Google Scholar 

  16. KOSUGE, T., L. COMAI, N.L. GLASS. 1983. Virulence determinants in plant-pathogen interactions. In. Plant Molecular Biology. (R. Goldberg, ed.), Alan R. Liss, Inc., New York, pp. 167–177.

    Google Scholar 

  17. HUTZINGER, O., T. KOSUGE. 1968. Microbial synthesis and degradation of indole-3-acetic acid. III. The isolation and characterization of indole-3-acetyl-ε-L-lysine. Biochemistry 7: 601–605.

    Article  CAS  Google Scholar 

  18. EVIDENTE, A., G. SURICO, N.S. IACOBELLIS, G. RANDAZZO. 1985. Isolation and structural characterization of α-N-acetyl-indole-3-acetyl-ε-L-lysine: a new metabolite of indole-3-acetic acid from Pseudomonas syringae pv savastanoi. Phytochemistry 24: 1499–1502.

    Article  Google Scholar 

  19. SCHRODER, G., S. WAFFENSCHMIDT, E.W. WEILER, J. SCHRODER. 1984. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 138: 387–391.

    Article  CAS  Google Scholar 

  20. THOMASHOW, L.S., S. REEVES, M.F. THOMASHOW. 1984. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc. Natl. Acad. Sci. USA 81: 5071–5075.

    Article  CAS  Google Scholar 

  21. VAN ONCKELEN, H., P. RUDELSHEIM, D. INZE, A. FOLLIN, E. MESSENS, S. HOVEMANS, J. SCHELL, M. VAN MONTAGU, J. DEGREEF. 1985. Tobacco plants transformed with the Agrobacterium tumefaciens T-DNA gene 1 contain high amounts of indoleacetamide. FEBS Lett. 181: 373–376.

    Article  Google Scholar 

  22. AKIYOSHI, D.E., H. KLEE, R.M. AMASINO, E.W. NESTER, M.P. GORDON. 1984. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci., USA 81: 5994–5998.

    Article  CAS  Google Scholar 

  23. BARRY, G.F., S.G. ROGERS, R.T. FRALEY, L. BRAND. 1984. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci., USA 81: 4776–4780.

    Article  CAS  Google Scholar 

  24. YAMADA, T., C.J. PALM, B. BROOKS, T. KOSUGE. 1985. Nucleotide sequences of Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci., USA 82: 6522–6526.

    Article  CAS  Google Scholar 

  25. KLEE, H., A. MONTOYA, F. HORODYSKI, C. LICHTENSTEIN, D. GARFINKEL, S. FULLER, C. FLORES, J. PESCHON, E.W. NESTER, M.P. GORDON. 1984. Nucleotide sequence of the tms genes of the pTi A6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc. Natl. Acad. Sci., USA 81: 1728–1732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kosuge, T., Sanger, M. (1986). Indoleacetic Acid, its Synthesis and Regulation: A Basis for Tumorigenicity in Plant Disease. In: Conn, E.E. (eds) The Shikimic Acid Pathway. Recent Advances in Phytochemistry, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8056-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8056-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8058-0

  • Online ISBN: 978-1-4684-8056-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics