Indoleacetic Acid, its Synthesis and Regulation: A Basis for Tumorigenicity in Plant Disease

  • Tsune Kosuge
  • Margaret Sanger
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 20)


The multibranched shikimic acid pathway provides the intermediates for the synthesis of the three amino acids phenylalanine, tyrosine and tryptophan in microorganisms and plants. In plants, these three amino acids are precursors for a variety of secondary metabolites such as alkaloids, coumarins, flavonoids, lignin precursors, indole derivatives and numerous phenolic compounds (Fig. 1). The role of the aromatic amino acids in protein synthesis is well known as is the role of indoleacetic acid in plant development; however, the function of the various secondary products is much less clear. Various physiological roles have been proposed including pest resistance, chromagens in flowers and fruits, and precursors for the structural component, lignin.


Indoleacetic Acid Crown Gall Plant Pathogenic Bacterium Crown Gall Tumor Shikimic Acid Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    LEISINGER, T., R. MARGRAFF. 1979. Secondary metabolites of the fluorescent Pseudomonads. Microbiol, Rev. 43: 422–442.Google Scholar
  2. 2.
    SKOOG, F., C.O. MILLER. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Soc. Exp. Biol. Symp. 11: 118–131.Google Scholar
  3. 3.
    BRAUN, A.C. 1958. A physiological basis for autonomous growth of the crown gall tumor cell. Proc. Natl. Acad. Sci. USA 44: 344–349.CrossRefGoogle Scholar
  4. 4.
    GELVIN, S.B. 1984. Plant tumorigenesis. In Plant-Microbe Interactions — Molecular and Genetic Perspectives. (T. Kosuge, E.W. Nester, eds.), MacMillan Inc., New York, pp. 243–377.Google Scholar
  5. 5.
    GARFINKLE, D.J., E.W. NESTER. 1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144: 732–743.Google Scholar
  6. 6.
    AKIYOSHI, D.E., R.O. MORRIS, R. HINZ, B.S. MISCHKE, T. KOSUGE, D.J. GARFINKEL, M.P. GORDON, E.W. NESTER. 1983. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80: 407–411.CrossRefGoogle Scholar
  7. 7.
    SMIDT, M., T. KOSUGE. 1978. The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol. Plant Pathol. 13: 203–214.CrossRefGoogle Scholar
  8. 8.
    COMAI, L., T. KOSUGE. 1980. Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J. Bacteriol. 143: 950–957.Google Scholar
  9. 9.
    COMAI, L., T. KOSUGE. 1982. Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J. Bacteriol. 149: 40–46.Google Scholar
  10. 10.
    COMAI, L., T. KOSUGE. 1983. The genetics of indoleacetic acid production and virulence in Pseudomonas savastanoi. In Molecular Genetics of the Bacteria-Plant Interactions. (A. Puhler, ed.), Springer-Verlag, Berlin, pp. 363–366.Google Scholar
  11. 11.
    COMAI, L., G. SURICO, T. KOSUGE. 1982. Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv savastanoi. J. Gen. Microbiol. 128: 2157–2163.Google Scholar
  12. 12.
    COMAI, L., T. KOSUGE. 1983. Transposable element that causes mutations in a plant pathogenic Pseudomonas sp. J. Bacteriol. 154: 1162–1167.Google Scholar
  13. 13.
    HUTCHESON, S.W., T. KOSUGE. 1985. Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv savastanoi. J. Biol. Chem. 260: 6281–6287.Google Scholar
  14. 14.
    KOSUGE, T., M.G. HESKETT, E.E. WILSON. 1966. Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J. Biol. Chem. 241: 3738–3744.Google Scholar
  15. 15.
    CHANDLER, M., D.J. GALAS. 1985. Studies on the transposition of IA1. In Plasmids in Bacteria. (D.R. Helinski, S.N. Cohen, D.B. Clewell, D.A. Jackson, A. Hollaender, eds.), Plenum Press, New York, pp. 53–77.CrossRefGoogle Scholar
  16. 16.
    KOSUGE, T., L. COMAI, N.L. GLASS. 1983. Virulence determinants in plant-pathogen interactions. In. Plant Molecular Biology. (R. Goldberg, ed.), Alan R. Liss, Inc., New York, pp. 167–177.Google Scholar
  17. 17.
    HUTZINGER, O., T. KOSUGE. 1968. Microbial synthesis and degradation of indole-3-acetic acid. III. The isolation and characterization of indole-3-acetyl-ε-L-lysine. Biochemistry 7: 601–605.CrossRefGoogle Scholar
  18. 18.
    EVIDENTE, A., G. SURICO, N.S. IACOBELLIS, G. RANDAZZO. 1985. Isolation and structural characterization of α-N-acetyl-indole-3-acetyl-ε-L-lysine: a new metabolite of indole-3-acetic acid from Pseudomonas syringae pv savastanoi. Phytochemistry 24: 1499–1502.CrossRefGoogle Scholar
  19. 19.
    SCHRODER, G., S. WAFFENSCHMIDT, E.W. WEILER, J. SCHRODER. 1984. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 138: 387–391.CrossRefGoogle Scholar
  20. 20.
    THOMASHOW, L.S., S. REEVES, M.F. THOMASHOW. 1984. Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc. Natl. Acad. Sci. USA 81: 5071–5075.CrossRefGoogle Scholar
  21. 21.
    VAN ONCKELEN, H., P. RUDELSHEIM, D. INZE, A. FOLLIN, E. MESSENS, S. HOVEMANS, J. SCHELL, M. VAN MONTAGU, J. DEGREEF. 1985. Tobacco plants transformed with the Agrobacterium tumefaciens T-DNA gene 1 contain high amounts of indoleacetamide. FEBS Lett. 181: 373–376.CrossRefGoogle Scholar
  22. 22.
    AKIYOSHI, D.E., H. KLEE, R.M. AMASINO, E.W. NESTER, M.P. GORDON. 1984. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci., USA 81: 5994–5998.CrossRefGoogle Scholar
  23. 23.
    BARRY, G.F., S.G. ROGERS, R.T. FRALEY, L. BRAND. 1984. Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci., USA 81: 4776–4780.CrossRefGoogle Scholar
  24. 24.
    YAMADA, T., C.J. PALM, B. BROOKS, T. KOSUGE. 1985. Nucleotide sequences of Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci., USA 82: 6522–6526.CrossRefGoogle Scholar
  25. 25.
    KLEE, H., A. MONTOYA, F. HORODYSKI, C. LICHTENSTEIN, D. GARFINKEL, S. FULLER, C. FLORES, J. PESCHON, E.W. NESTER, M.P. GORDON. 1984. Nucleotide sequence of the tms genes of the pTi A6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc. Natl. Acad. Sci., USA 81: 1728–1732.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Tsune Kosuge
    • 1
  • Margaret Sanger
    • 1
  1. 1.Department of Plant PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations