Specific Inhibitors as Probes into the Biosynthesis And Metabolism of Aromatic Amino Acids

  • Nikolaus Amrhein
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 20)


Inhibitors of enzymic and metabolic processes are invaluable tools in biochemical and physiological research, and their application as drugs or pesticides ranges from medicine to agriculture. The information one can extract from their judicious use depends, on the one hand, on the complexity of the system to which they are applied and, on the other hand, on their selectivity for a given target, as well as on their access to this target. Accessibility in this context is meant to include the arrival of the inhibitor at its target site in a state in which it is capable of exerting its inhibitory action. It is obvious that the chances for selectivity of a given inhibitor decrease with the increasing complexity of a system as measured, for example, by the number of enzymic reactions involved and the degree of their interaction and interdependence in the metabolic network of a cell. To illustrate this point, α-aminooxy acetic acid (AOA) is a fairly potent inhibitor of the biosynthesis of phenylpropanoid compounds and has been used in complementation experiments to study the biosynthesis of cyanidin in buckwheat.1


Aromatic Amino Acid Phosphonic Acid Shikimic Acid Shikimate Pathway Herbicide Glyphosate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AMRHEIN, N. 1979. Biosynthesis of cyanidin in buckwheat hypocotyls. Phytochemistry 18: 585–589.CrossRefGoogle Scholar
  2. 2.
    JOHN, R.A., A. CHARTERS, L.J. FOWLER. 1978. The reaction of amino-oxyacetate with pyridoxal phosphate-dependent enzymes. Biochem. J. 171: 771–779.Google Scholar
  3. 3.
    AMRHEIN, N., D. WENKER. 1979. Novel inhibitors of ethylene production in higher plants. Plant Cell Physiol. 20: 1635–1642.Google Scholar
  4. 4.
    FUJINO, D.W., M.S. REID, S.F. YANG. 1980. Effects of amino-oxyacetic acid on postharvest characteristics of carnation. Acta Hortic. 113: 59–64.Google Scholar
  5. 5.
    FEDTKE, C. 1982. Biochemistry and physiology of herbicide action. Springer, Berlin — Heidelberg -New York, 202 pp.CrossRefGoogle Scholar
  6. 6.
    JAWORSKI, E.G. 1972. The mode of action of N-phosphonomethylglycine. Inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem. 20: 1195–1198.CrossRefGoogle Scholar
  7. 7.
    AMRHEIN, N., K.-H. GÖDEKE. 1977. α-Aminooxy-β-phenylpropionic acid, a potent inhibitor of L-phenylalanine ammonia-lyase in vitro and in vivo. Plant Sci. Lett. 8: 313–317.CrossRefGoogle Scholar
  8. 8.
    CORBETT, J.R., K. WRIGHT, A.C. BAILLIE. 1984. The biochemical mode of action of pesticides. 2nd Edition, Academic Press, London, 382 pp.Google Scholar
  9. 9.
    HASLAM, E. 1974. The shikimate pathway. Butterworths, London, 316 pp.Google Scholar
  10. 10.
    WEISS, U., J.M. EDWARDS. 1980. The biosynthesis of aromatic compounds. John Wiley and Sons, New York, 728 pp.Google Scholar
  11. 11.
    HERRMANN, K.M. 1983. The common aromatic biosynthetic pathway, In Amino Acids: Biosynthesis and Genetic Regulation. (K.M. Herrmann, R.L. Somerville, eds.), Addison-Wesley, Reading, Massachusetts, pp. 301–322.Google Scholar
  12. 12.
    LE MARéCHAL, P., C. FROUSSIOS, M. LEVEL, R. AZERAD. 1980. Enzyme properties of phosphonic analogues of D-erythrose 4-phosphate. Biochem. Biophys. Res. Commun. 92: 1097–1103.CrossRefGoogle Scholar
  13. 13.
    ROISCH, U., F. LINGENS. 1974. Wirkung des Herbizids N-(Phosphonomethyl)glycin auf die Biosynthese der aromatischen Aminosäuren. Angew. Chem. 13: 400.Google Scholar
  14. 14.
    ROISCH, U., F. LINGENS. 1980. Zur Wirkungsweise des Herbizids N-(Phosphonomethyl)Glycin. Einfluß von N-(Phosphonomethyl)Glycin auf das Wachstum und auf die Enzyme der Aromatenbiosynthese von Escherichia coli. Hoppe-Seyler’s Z. Physiol. Chem. 361: 1049–1058.Google Scholar
  15. 15.
    RUBIN, J.L., C.G. GAINES, R.A. JENSEN. 1982. Enzymological basis for herbicidal action of glyphosate. Plant Physiol. 70: 833–839.CrossRefGoogle Scholar
  16. 16.
    BODE, R., C. MELO RAMOS, D. BIRNBAUM. 1984. Inhibition of tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase by glyphosate in Candida maltosa. FEMS Microbiol. Lett. 23: 7–10.Google Scholar
  17. 17.
    ENGEL, R. 1977. Phosphonates as analogues of natural phosphates. Chem. Rev. 77: 349–367.CrossRefGoogle Scholar
  18. 18.
    LE MARéCHAL, P., C. FROUSSIOS, N. LEVEL, R. AZERAD. 1980. The interaction of phosphonate and homophos-phonate analogues of 3-deoxy-D-arabino heptulosonate 7-phosphate with 3-dehydroquinate synthetase from Escherichia coli.Google Scholar
  19. 19.
    PILCH, P.F., R.L. SOMERVILLE. 1976. Fluorine-containing analogues of intermediates in the shikimate pathway. Biochemistry 15: 5315–5320.CrossRefGoogle Scholar
  20. 20.
    BAILLIE, A.C., J.R. CORBETT, J.R. DOWSETT, P. MCCLOSKEY. 1972. Inhibitors of shikimate dehydrogenase as potential herbicides. Pestic. Sci. 3: 113–120.Google Scholar
  21. 21.
    BAIRD, D.D., R.P. UPCHURCH, W.B. HOMESLEY, J.E. FRANZ. 1971. Introduction of a new broad spectrum post emergence herbicide class with utility for herbaceous perennial weed control. Proc. North Centr. Weed Control Conf. 26: 64–68.Google Scholar
  22. 22.
    FRANZ, J.E. 1979. Glyphosate and related chemistry. In Advances in Pesticide Science, Part 2. (H. Geissbühler, ed.), Pergamon Press, Oxford and New York, pp. 139–147.Google Scholar
  23. 23.
    HOAGLAND, R.E., S.O. DUKE. 1982. Biochemical effects of glyphosate [N-(phosphonomethyl)glycine]. In Biochemical responses induced by herbicides. (D.E. Moreland, J.B. St. John, F.D. Hess, eds.), ACS Symposium Series 181: 175–205.CrossRefGoogle Scholar
  24. 24.
    GOUGLER, J.A., D.R. GEIGER. 1981. Uptake and distribution of N-(phosphonomethyl)glycine in sugar beet plants. Plant Physiol. 68: 668–672.CrossRefGoogle Scholar
  25. 25.
    SPRANKLE, P., W.F. MEGGITT, D. PENNER. 1975. Absorption, action, and translocation of glyphosate. Weed Sci. 23: 235–240.Google Scholar
  26. 26.
    HADERLIE, L.C., F.W. SLIFE, H.S. BUTLER. 1978. 14C-glyphosate absorption and translocation in germinating maize (Zea mays) and soybean (Glycine max) seeds and in soybean plants. Weed Res. 18: 269–273.CrossRefGoogle Scholar
  27. 27.
    ASHTON, F.M., A.S. CRAFTS. 1981. Mode of Action of Herbicides. 2nd Edition, John Wiley and Sons, New York, pp. 236–253.Google Scholar
  28. 28.
    KABACHNIK, M.I., T.Y. MEDVED, N.M. DYATLOVA, M.V. RUDOMINO. 1974. Organophosphorus complexones. Russ. Chem. Rev. (Engl. Transl.) 43: 733–744.CrossRefGoogle Scholar
  29. 29.
    GLASS, R.L. 1984. Metal complex formation by glyphosate. J. Agric. Food Chem. 32: 1249–1253.CrossRefGoogle Scholar
  30. 30.
    HADERLIE, L.C., J. WIDHOLM, F.W. SLIFE. 1977. Effect of glyphosate on carrot and tobacco cells. Plant Physiol. 60: 40–43.CrossRefGoogle Scholar
  31. 31.
    GRESSHOFF, P. 1979. Growth inhibition of glyphosate and reversal of its action by phenylalanine and tyrosine. Aust. J. Plant Physiol. 6: 177–185.CrossRefGoogle Scholar
  32. 32.
    HOLLäNDER, H., N. AMRHEIN. 1980. The site of the inhibition of the shikimate pathway by glyphosate. I. Inhibition by glyphosate of phenylpropanoid synthesis in buckwheat (Fagopyrum esculentum Moench). Plant Physiol. 66: 823–829.CrossRefGoogle Scholar
  33. 33.
    SCHERF, H., M.H. ZENK. 1967. Der Einfluβ des Lichtes auf die Flavonoidsynthese und die Enzyminduktion bei Fagopyrum esculentum Moench. Z. Pflanzenphy-siol. 57: 401–418.Google Scholar
  34. 34.
    AMRHEIN, N., B. DEUS, P. GEHRKE, H.C. STEINRÜCKEN. 1980. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66: 830–834.CrossRefGoogle Scholar
  35. 35.
    AMRHEIN, N., B. DEUS, P. GEHRKE, H. HOLLÄNDER, J. SCHAB, A. SCHULZ, H.C. STEINRÜCKEN. 1981. Interference of glyphosate with the shikimate pathway. Proc. Plant Growth Regul. Soc. Am. 8: 99–106.Google Scholar
  36. 36.
    AMRHEIN, N., J. SCHAB, H.C. STEINRÜCKEN. 1981. The mode of action of the herbicide glyphosate. Naturwissenschaften 67: 356–357.CrossRefGoogle Scholar
  37. 37.
    BERLIN, J., L. WITTE. 1980. Effect of glyphosate on shikimic acid accumulation in tobacco cell cultures with low and high yields of cinnamoyl putrescines. Z. Naturforsch. 36c: 210–214.Google Scholar
  38. 38.
    ISHIKURA, N., Y. TAKESHIMA. 1984. Effects of glyphosate on caffeic acid metabolism in Perilla cell suspension cultures. Plant Cell Physiol. 25: 185–189.Google Scholar
  39. 39.
    DUKE, S.O., R.E. HOAGLAND, C.D. ELMORE. 1979. Effects of glyphosate on metabolism of phenolic compounds. IV. Phenylalanine ammonia-lyase activity, free amino acids, and soluble hydroxyphenolic compounds in axes of light-grown soybeans. Physiol. Plant 46: 307–317.CrossRefGoogle Scholar
  40. 40.
    AMRHEIN, N., H. TOPP, O. JOOP. 1984. The pathway of gallic acid biosynthesis in higher plants. Plant Physiol. 75: S96.Google Scholar
  41. 41.
    SAIJO, R. 1983. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agric. Biol. Chem. 47: 455–460.CrossRefGoogle Scholar
  42. 42.
    AMRHEIN, N., H. HOLLÄNDER. 1981. Light promotes the production of shikimic acid in buckwheat. Naturwissenschaften 68: 43.CrossRefGoogle Scholar
  43. 43.
    SUZICH, J.A., R. RANJEVA, P.M. HASEGAWA, K.M. HERRMANN. 1984. Regulation of the shikimate pathway of carrot cells in suspension culture. Plant Physiol. 75: 369–371.CrossRefGoogle Scholar
  44. 44.
    BOWEN, J.R., T. KOSUGE. 1977. The formation of shikimate-3-phosphate in cell-free preparations of Sorghum. Phytochemistry 16: 881–884.CrossRefGoogle Scholar
  45. 45.
    BOWEN, J.R., T. KOSUGE. 1979. In vivo activity, purification, and characterization of shikimate kinase from Sorghum. Plant Physiol. 64: 382–386.CrossRefGoogle Scholar
  46. 46.
    KOSHIBA, T. 1979. Alicyclic acid metabolism in plants 12. Partial purification and some properties of shikimate kinase from Phaseolus mungo seedlings. Plant Cell Physiol. 20: 803–809.Google Scholar
  47. 47.
    KOSHIBA, T. 1979. Shikimate kinase and 5-enolpyru-vylshikimate-3-phosphate synthase in Phaseolus mungo seedlings. Z. Pflanzenphysiol. 88: 353–355.Google Scholar
  48. 48.
    KOSHIBA, T. 1979. Organization of enzymes in the shikimate pathway of Phaseolus mungo seedlings. Plant Cell Physiol. 20: 667–670.Google Scholar
  49. 49.
    STEINRÜCKEN, H.C., N. AMRHEIN. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94: 1207–1212.CrossRefGoogle Scholar
  50. 50.
    LEWENDON, A., J.R. COGGINS. 1983. Purification of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli. Biochem. J. 213: 187–191.Google Scholar
  51. 51.
    DUNCAN, K., L. LEWENDON, J.R. COGGINS. 1984. The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli. FEBS Lett. 165: 121–127.CrossRefGoogle Scholar
  52. 52.
    STEINRUCKEN, H.C. 1982. Zur Wirkung des Herbizids Glyphosat: Einfluss auf die 5-Enolpyruvoylshiki-misäure-3-phosphat Synthase aus Aerobacter aerogenes 62–1. Doctoral Dissertation. Ruhr-Universität Bochum, 153 pp.Google Scholar
  53. 53.
    ANTON, D.L., L. HEDSTROM, S.M. FISH, R.H. ABELES. 1983. Mechanism of enolpyruvyl shikimate 3-phosphate synthase exchange of phosphoenolpyruvate with solvent protons. Biochemistry 22: 5903–5908.CrossRefGoogle Scholar
  54. 54.
    STEINRÜCKEN, H.C., N. AMRHEIN. 1984. 5-Enolpyruvyl-shikimate 3-phosphate synthase of Klebsiella pneumoniae. 1. Purification and properties. Eur. J. Biochem. 143: 341–349.CrossRefGoogle Scholar
  55. 55.
    BOOCOCK, M.R., J.R. COGGINS. 1983. Kinetics of 5-enolpyruvylshikimate 3-phosphate synthase inhibition by glyphosate. FEBS Lett. 154: 127–133.CrossRefGoogle Scholar
  56. 56.
    MOUSDALE, D.M., J.R. COGGINS. 1984. Purification and properties of 5-enolpyruvylshikimate 3-phosphate synthase from seedlings of Pisum sativum L. Planta 160: 78–83.CrossRefGoogle Scholar
  57. 57.
    AMRHEIN, N., H. HOLLÄNDER-CZYTKO, J. LEIFELD, A. SCHULZ, H.C. STEINRUCKEN, H. TOPP. 1982. Inhibition of the shikimate pathway by glyphosate. In Groupe Polyphenols. Journées Internationales d’Études et Assemblées Générales. (A.M. Boudet, R. Ranjeva, eds.), Bulletin d’Liaison 11: 21–30.Google Scholar
  58. 58.
    RUBIN, J.L., C.G. GAINES, R.A. JENSEN. 1984. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthase from suspension-cultured cells of Nicotiana silvestris. Plant Physiol. 75: 829–845.CrossRefGoogle Scholar
  59. 59.
    ROGERS, S.G., L.A. BRAND, S.B. HOLDER, E.S. SHARPS, M.J. BRACKIN. 1983. Amplification of the aroA gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46: 37–43.Google Scholar
  60. 60.
    JAWORSKI, E.G., T.J. MOZER, S.G. ROGERS, D. TIEMIER. 1983. Herbicide target sites, mode of action, and detoxification: Chloroacetanilides and glyphosate. In Biosynthesis of the Photosynthetic Apparatus: Molecular Biology, Development and Regulation. (J.P. Thornber, L.A. Staehelin, R.G. Hallick, eds.), UCLA Symp. Mol. Cell Biol., New Ser. Vol. 14, Alan R. Liss, Inc., New York, pp. 335–349.Google Scholar
  61. 61.
    LUMSDEN, J., J.R. COGGINS. 1977. The subunit structure of the arom multienzyme complex of Neurospora crassa. A possible pentafunctional polypeptide chain. Biochem. J. 161: 599–607.Google Scholar
  62. 62.
    DUNCAN, K., A. LEWENDON, J.R. COGGINS. 1984. The complete amino acid sequence of Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase. FEBS Lett. 170: 59–63.CrossRefGoogle Scholar
  63. 63.
    STALKER, D.M., W.R. HIATT, L. COMAI. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate 3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260: 4724–4728.Google Scholar
  64. 64.
    CASSIDY, P.J., F.M. KAHAN. 1973. A stable enzyme-phosphoenolpyruvate intermediate in the synthesis of uridine-5-diphospho-N-acetyl-2-amino-2-deoxyglucose-3-O-enolpyruvylether. Biochemistry 12: 1363–1374.CrossRefGoogle Scholar
  65. 65.
    LEVIN, J.G., D.B. SPRINSON. 1964. The enzymatic formation and isolation of 3-enolpyruvylshikimate-5-phosphate. J. Biol. Chem. 239: 1142–1150.Google Scholar
  66. 66.
    BONDINELL, W.E., J. VNEK, P.F. KNOWLES, M. SPRECHER, D.B. SPRINSON. 1971. On the mechanism of 5-enolpyruvylshikimate 3-phosphate synthetase. J. Biol. Chem. 246: 6191–6196.Google Scholar
  67. 67.
    GRIMSHAW, C.E., S.G. SOGO, J.R. KNOWLES. 1982. The fate of the hydrogens of phosphoenolpyruvate in the reaction catalyzed by 5-enolpyruvylshikimate 3-phosphate synthase. J. Biol. Chem. 257: 596–598.Google Scholar
  68. 68.
    STEINRÜCKEN, H.C., N. AMRHEIN. 1984. 5-Enolpyruvyl-shikimate 3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosate [N-(phos-phonomethy)glycine]. Eur. J. Biochem. 143: 351–357.CrossRefGoogle Scholar
  69. 69.
    BODE, R., C. MELO, D. BIRNBAUM. 1984. Mode of action of glyphosate in Candida maltosa. Arch. Microbiol. 140: 83–85.CrossRefGoogle Scholar
  70. 70.
    SHARPS, E.S. 1984. A radiometric assay for 5-enolpyruvylshikimate-3-phosphate synthase. Anal. Biochem. 140: 183–189.CrossRefGoogle Scholar
  71. 71.
    FEIERABEND, J., D. BRASSEL. 1977. Subcellular localization of shikimate dehydrogenase in higher plants. Z. Pflanzenphysiol. 82: 334–346.Google Scholar
  72. 72.
    BICKEL, H., L. PALME, G. SCHULTZ. 1978. Incorporation of shikimate and other precursors into aromatic amino acids and prenylquinones of isolated spinach chloroplasts. Phytochemistry 18: 498–499.CrossRefGoogle Scholar
  73. 73.
    ROTHE, G.M., G. HENGST, I. MILDENBERGER, H. SCHARER, D. UTESCH. 1983. Evidence for an intra- and extraplastidic prechorismate pathway. Planta 157: 358–366.CrossRefGoogle Scholar
  74. 74.
    D’AMATO, T.A., R.J. GANSON, C.G. GAINES, R.A. JENSEN. 1984. Subcellular localization of chorismate mutase isoenzymes in protoplasts from mesophyll and suspension-cultured cells of Nicotiana sylvestris. Planta 162: 104–108.CrossRefGoogle Scholar
  75. 75.
    MOUSDALE, D.M., J.R. COGGINS. 1985. Subcellular localization of the common shikimate pathway enzymes in Pisum sativum L. Planta 163: 241–249.CrossRefGoogle Scholar
  76. 76.
    GERHARDT, R., H.W. HELDT. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542–547.CrossRefGoogle Scholar
  77. 77.
    HOLLÄNDER-CZYTKO, H., N. AMRHEIN. 1983. Subcellular compartmentation of shikimic acid and phenylalanine in buckwheat cell suspension cultures grown in the presence of shikimate pathway inhibitors. Plant Sci. Lett. 29: 89–96.Google Scholar
  78. 78.
    AMRHEIN, N., D. JOHÄNNING, J. SCHAB, A. SCHULZ. 1983. Biochemical basis for glyphosate tolerance in a bacterium and a plant tissue culture. FEBS Lett. 157: 191–196.CrossRefGoogle Scholar
  79. 79.
    AMRHEIN, N., D. JOHÄNNING, C.C. SMART. 1985. A glyphosate-tolerant plant tissue culture. In Primary and Secondary Metabolism of Plant Cell Cultures. (K.H. Neumann, ed.), Springer, Berlin-Heidelberg, New York, pp. 356–361.CrossRefGoogle Scholar
  80. 80.
    NAFZIGER, E.D., J.M. WIDHOLM, H.C. STEINRÜCKEN, J.L. KILLMER. 1984. Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76: 571–574.CrossRefGoogle Scholar
  81. 81.
    STARK, G.R., F.M. WAHL. 1984. Gene amplification. Annu. Rev. Biochem. 53: 447–491.CrossRefGoogle Scholar
  82. 82.
    COMAI, L., L.C. SEN, D.M. STALKER. 1983. An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221: 370–371.CrossRefGoogle Scholar
  83. 83.
    SCHULZ, A., D. SOST, N. AMRHEIN. 1984. Insensitivity of 5-enolpyruvylshikimic acid-3-phosphate synthase to glyphosate confers resistance to this herbicide in a strain of Aerobacter aerogenes. Arch. Microbiol. 137: 121–123.CrossRefGoogle Scholar
  84. 84.
    SOST, D., A. SCHULZ, N. AMRHEIN. 1984. Characterization of a glyphosate insensitive 5-enolpyruvyl-shikimic acid-3-phosphate synthase. FEBS Lett. 173: 238–241.CrossRefGoogle Scholar
  85. 85.
    SCHULZ, A., A. KRÜPER, N. AMRHEIN. 1985. Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. FEMS Microbiol. Lett. 28: 297–301.CrossRefGoogle Scholar
  86. 86.
    HARDY, R.W.F., R.T. GIAQUINTA. 1984. Molecular biology of herbicides. BioEssays 1: 152–156.CrossRefGoogle Scholar
  87. 87.
    NETZER, W.F. 1984. Engineering herbicide tolerance: When is it worthwhile? Biotechnology 2: 939–944.CrossRefGoogle Scholar
  88. 88.
    JONES, D.H. 1984. Phenylalanine ammonia-lyase: Regulation of its induction, and its role in plant development. Phytochemistry 23: 1349–1359.CrossRefGoogle Scholar
  89. 89.
    HANSON, K.R., E.A. HAVIR. 1981. Phenylalanine ammonia-lyase. In The Biochemistry of Plants: A Comprehensive Treatise. (E.E. Conn, ed.), Vol. 7, Academic Press, New York, pp. 577–625.Google Scholar
  90. 90.
    AMRHEIN, N., K.H. GÖDEKE, J. GERHARDT. 1976. The estimation of phenylalanine ammonia-lyase(PAL)-activity in intact cells of higher plant tissue. 1. Parameters of the assay. Planta 131: 33–40.CrossRefGoogle Scholar
  91. 91.
    AMRHEIN, N., K.H. GÖDEKE, V.I. KEFELI. 1976. The estimation of relative intracellular phenylalanine ammonia-lyase(PAL)-activities and the modulation in vivo and in vitro by competitive inhibitors. Ber. Deutsch. Bot. Ges. 89: 247–259.Google Scholar
  92. 92.
    AMRHEIN, N., H. HOLLÄNDER. 1979. Inhibition of anthocyanin formation in seedlings and flowers by the enantiomers of α-aminooxy-β-phenylpropionic acid and their N-benzyloxycarbonyl derivatives. Planta 144: 385–389.CrossRefGoogle Scholar
  93. 93.
    HOLLÄNDER, H., H.H. KILTZ, N. AMRHEIN. 1979. Interference of L-α-aminooxy-β-phenylpropionic acid with phenylalanine metabolism in buckwheat. Z. Naturforsch. 34c: 1162–1173.Google Scholar
  94. 94.
    HANSON, K.R. 1981. Phenylalanine ammonia-lyase: Mirror-image packing of D- and L-phenylalanine and D- and L-transition state analogs into the active site. Arch. Biochem. Biophys. 211: 575–588.CrossRefGoogle Scholar
  95. 95.
    HAVIR, E.A. 1981. Modification of L-phenylalanine ammonia-lyase in soybean cell suspension cultures by 2-aminooxyacetate and L-2-aminooxy-3-phenylpro-pionate. Planta 152: 124–130.CrossRefGoogle Scholar
  96. 96.
    JONES, H.D., D.H. NORTHCOTE. 1984. Stability of the complex formed between French bean (Phaseolus vulgaris) phenylalanine ammonia-lyase and its transition-state analog. Arch. Biochem. Biophys. 235: 167–177.CrossRefGoogle Scholar
  97. 97.
    AMRHEIN, N., J. GERHARDT. 1979. Superinduction of phenylalanine ammonia-lyase in gherkin hypocotyls caused by the inhibitor, L-α-aminooxy-β-phenylpro-pionic acid. Biochim. Biophys. Acta 583: 434–442.CrossRefGoogle Scholar
  98. 98.
    NOE, W., C. LANGEBARTELS, H.U. SEITZ. 1980. Anthocyanin accumulation and PAL activity in a suspension culture of Daucus carota L. Inhibition by L-AOPP and t-cinnamic acid. Planta 149: 283–287.CrossRefGoogle Scholar
  99. 99.
    NOE, W., H.U. SEITZ. 1982. Induction of mRNA activity for phenylalanine ammonia-lyase (PAL) by L-α-aminooxy-β-phenylpropionic acid, a substrate analogue of L-phenylalanine, in cell suspension cultures of Daucus carota L. FEBS Lett. 146: 52–54.CrossRefGoogle Scholar
  100. 100.
    SHIELDS, S.E., V.P. WINGATE, C.J. LAMB. 1982. Dual control of phenylalanine ammonia-lyase production and removal by its product cinnamic acid. Eur. J. Biochem. 123: 389–395.CrossRefGoogle Scholar
  101. 101.
    AMRHEIN, N., E. DIEDERICH. 1980. Turnover of isofla-vones in Cicer arietinum L. Naturwissenschaften 67: 40.CrossRefGoogle Scholar
  102. 102.
    JACQUES, U., J. KÖSTER, W. BARZ. 1985. Differential turnover of isoflavone 7–0-glucoside-6″-0-malonates in deer arietinum roots. Phytochemistry 24: 949–951.CrossRefGoogle Scholar
  103. 103.
    MOESTA, P., H. GRISEBACH. 1982. L-2-Aminooxy-3-phenylpropionic acid inhibits phytoalexin accumulation in soybean with concomitant loss of resistance against Phytophthora megasperma f. sp. glycinea. Physiol. Plant Pathol. 21: 65–70.CrossRefGoogle Scholar
  104. 104.
    BARNES, L., R.L. JONES. 1984. Regulation of phenylalanine ammonia-lyase activity and growth in lettuce by light and gibberellic acid. Plant Cell Environ. 7: 89–95.CrossRefGoogle Scholar
  105. 105.
    AMRHEIN, N., G. FRANK, G. LEMM, H.B. LUHMANN. 1983. Inhibition of lignin formation by L-α-aminooxy-β-phenylpropionic acid, an inhibitor of phenylalanine ammonia-lyase. Eur. J. Cell Biol. 29: 139–144.Google Scholar
  106. 106.
    SMART, C.C., N. AMRHEIN. 1985. The influence of lignification on the development of vascular tissue in Vigna radiata L. Protoplasma 124: 87–95.CrossRefGoogle Scholar
  107. 107.
    RAVEN, J.A. 1977. The evolution of vascular land plants in relation to supracellular transport processes. In Advances in Botanical Research. (W.H. Woolhouse, ed.), Vol. 5, London, Academic Press, pp. 153–219.CrossRefGoogle Scholar
  108. 108.
    GRAND, C., F. SARNI, A.M. BOUDET. 1985. Inhibition of cinnamyl alcohol dehydrogenase activity and lignin synthesis in poplar (Populus X euramericana Dode) tissues by two organic compounds. Planta 163: 232–237.CrossRefGoogle Scholar
  109. 109.
    DE-EKNAMKUL, W., B.E. ELLIS. 1985. Characterization of tyrosine aminotransferase, a key enzyme in rosmarinic acid formation in Anchusa officinalis cell cultures. Plant Physiol. 77: S112.Google Scholar
  110. 110.
    WILLIAMS, R., C. CHAPPLE, B.E. ELLIS. 1985. Characterization of tyrosine decarboxylase from Syringa vulgaris cell cultures. Plant Physiol. 77: S112.Google Scholar
  111. 111.
    HANSON, K.R., E.A. HAVIR, C. RESSLER. 1979. Phenylalanine ammonia-lyase: Enzymic conversion of 3-(1,4-cyclohexadienyl)-L-alanine to trans-3-(1,4-cyclohexadienyl)acrylic acid. Biochemistry 18: 1431–1438.CrossRefGoogle Scholar
  112. 112.
    BAYLIS, E.K., C.D. CAMPUBELL, J.G. DINGWALL. 1984. 1-Amino-alkylphosphonous acids. Part 1. Isosteres of the protein amino acids. J. Chem. Soc., Perkin Trans. I: 2845–2853.CrossRefGoogle Scholar
  113. 113.
    ELWOOD, J.K., R.M. HERBST, G.L. KILGOUR. 1965. Tetrazole analogues of glutamic acid. I. Reaction with glutamic dehydrogenase. J. Biol. Chem. 240: 2073–2076.Google Scholar
  114. 114.
    CHARI, R.V.J., J. WEMPLE. 1979. A simple, efficient synthesis of β-methylene phenylalanine. A new approach to the preparation of β,γ-unsaturated α-amino acid enzyme substrate analogs. Tetrahedron Lett. 111–114.Google Scholar
  115. 115.
    LEUKART, O., M. CAVIEZEL, A. EBERLE, E. ESCHER, A. TUN-KYI, R. SCHWYZER. L-o-Carboranylalanine, a boron analogue of phenylalanine. Helv. Chim. Acta 59: 2184–2187.Google Scholar
  116. 116.
    DO, K.Q., P. THANEI, M. CAVIEZEL, R. SCHWYZER. 1979. 98. The synthesis of (S)-(+)-2-amino-3-(l-adaman-tyl)-propionic acid (L-(+)-adamantylalanine, Ada) as a ffatf or ‘super’ analogue of leucine and phenylalanine. Helv. Chim. Acta 62: 956–964.CrossRefGoogle Scholar
  117. 117.
    RAY, T.B. 1984. Site of action of chlorsulfuron. Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75: 827–831.CrossRefGoogle Scholar
  118. 118.
    LAROSSA, R.A., J.V. SCHLOSS. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 259: 8753–8757.Google Scholar
  119. 119.
    WAUCHOPE, D. 1976. Acid dissociation constants of arsenic acid, methylarsonic acid (MAA), dimethyl-arsinic acid (cacodylic acid), and N-(phosphono-methyl)glycine (glyphosate). J. Agrie. Food Chem. 24: 717–721.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Nikolaus Amrhein
    • 1
  1. 1.Lehrstuhl für PflanzenphysiologieRuhr-Universität BochumBochumFederal Republic of Germany

Personalised recommendations