The Shikimate Pathway — An Overview

  • Heinz G. Floss
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 20)


It has been eight years since the Phytochemical Society last held a symposium centered on the theme of Biosynthesis of Aromatic Compounds at its joint meeting with the European Phytochemical Society in Ghent.1 The intervening years have seen a tremendous revival of interest in the shikimate pathway. This renewed focus was stimulated by the discovery in Amrhein’s group that the herbicide glyphosate (Fig. 1) acts by inhibiting the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase. Glyphosate is a very successful commercial product for which estimated sales of about $480 million in 1984 have been reported. The discovery of its mode of action has spurred intense efforts in many laboratories to design new or improved compounds of this type.


American Chemical Society Shikimic Acid Total Synthesis Shikimate Pathway Chorismate Mutase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SWAIN, T., J.B. HARBORNE, C.F. VAN SUMERE. 1979. Biochemistry of plant phenolics. In Recent Advances in Phytochemistry. Vol. 12, Plenum Press, New York.Google Scholar
  2. 2.
    STEINRÜCKEN, H.C., N. AMRHEIN. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid 3-phosphate synthase. Biochem. Biophys. Res. Commun. 94: 1207–1212.CrossRefGoogle Scholar
  3. 3.
    HASLAM, E. 1974. The Shikimate Pathway. Butterworths, London, 316 pp.Google Scholar
  4. 4.
    WEISS, U., J.M. EDWARDS. 1980. The Biosynthesis of Aromatic Compounds. Wiley, New York, 728 pp.Google Scholar
  5. 5.
    DANISHEFSKY, S., J. MORRIS, C.A. CLIZBE. 1981. Total synthesis of pretyrosine (arogenate). J. Am. Chem. Soc. 103: 1602–1604.CrossRefGoogle Scholar
  6. 6.
    DANISHEFSKY, S., M. HIRAMA, N. FRITSCH, J. CLARDY. 1979. Synthesis of disodium prephenate and disodium epiprephenate. Stereochemistry of prephenic acid and an observation on the base-catalyzed rearrangements of prephenic acid to p-hydroxyphenyllactic acid. J. Am. Chem. Soc. 101: 7013–7018.CrossRefGoogle Scholar
  7. 7.
    FROST, J.W., J.R. KNOWLES. 1984. 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate: Chemical synthesis and isolation from Escherichia coli auxotrophs. Biochemistry 23: 4465–4469.CrossRefGoogle Scholar
  8. 8.
    KOREEDA, M., M.A. CIUFOLINI. 1982. Natural product synthesis via allylsilanes. 1. Synthesis and reactions of (1E,3E)-4-acetoxy-l-(trimethylsilyl)-1,3-butadiene and its use in the total synthesis of (-)-shikimic acid. J. Am. Chem. Soc. 103: 2308–2310.CrossRefGoogle Scholar
  9. 9.
    COBLENS, K.E., V.B. MURALIDHARAN, B. GANEM. 1982. Shikimate-derived metabolites. 12. Stereocontrolled total synthesis of shikimic acid and 6-β-deuterioshikimate. J. Org. Chem. 47: 5041–5042.CrossRefGoogle Scholar
  10. 10.
    FLEET, G.W., T.K.M. SHING. 1983. An entry to chiral cyclohexanes from carbohydrates: A short, efficient and enantiospecific synthesis of (-)-shikimic acid from D-mannose. J. Chem. Soc, Chem. Commun. 849–850.Google Scholar
  11. 11.
    CAMPBELL, M.M., A.D. KAYE, M. SAINSBURY, R. YAVARZADEH. 1984. Brief synthesis of (±)-methyl shikimate, (±)-methyl epishikimate and structural variants. Tetrahedron 40: 2461–2470.CrossRefGoogle Scholar
  12. 12.
    RAJAPAKSA, D., B.A. KEAY, R. RODRIGO. 1984. Shikimic acids from furan: Methods of stereocontrolled access to 3,4,5-trioxygenated cyclohexenes. Can. J. Chem. 62: 826–827.CrossRefGoogle Scholar
  13. 13.
    BARTLETT, P.A., L.A. MCQUAID. 1984. Total synthesis of (±)-3-phosphoshikimic acid. J. Am. Chem. Soc. 106: 7854–7860.CrossRefGoogle Scholar
  14. 14.
    TENG, C.-Y.P., Y. YUKIMOTO, B. GANEM. 1985. Shikimate-derived metabolites. 14. Chiral synthesis of 5-enolpyruvyl-shikimate 3-phosphate. Tetrahedron Lett. 21–24.Google Scholar
  15. 15.
    MCGOWAN, C.A., G.A. BERCHTOLD. 1982. Total synthesis of racemic chorismic acid and (-)-5-enolpyruvylshi-kimic acid (“Compound Z”). J. Am. Chem. Soc. 104: 7036–7041.CrossRefGoogle Scholar
  16. 16.
    HOARE, J.H., P.P. POLICASTRO, G.A. BERCHTOLD. 1983. Improved synthesis of racemic chorismic acid. Claisen rearrangement of 4-epi-chorismic acid and dimethyl 4-epi-chorismate. J. Am. Chem. Soc. 105: 6264–6267.CrossRefGoogle Scholar
  17. 17.
    GANEM, B., N. IKOTA, V.B. MURALIDHARAN, W.S. WADE, S.D. YOUNG, Y. YUKIMOTO. 1982. Total synthesis of (±)-chorismic acid. J. Am. Chem. Soc. 104: 6787–6788.CrossRefGoogle Scholar
  18. 18.
    BUSCH, F.R., G.A. BERCHTOLD. 1983. Total synthesis of racemic isochorismic acid. J. Am. Chem. Soc. 105: 3346–3347.CrossRefGoogle Scholar
  19. 19.
    TENG, C.-Y.P., B. GANEM. 1984. Shikimate-derived metabolites. 13. A key intermediate in the biosynthesis of anthranilate from chorismate. J. Am. Chem. Soc. 106: 2463–2464.CrossRefGoogle Scholar
  20. 20.
    POLICASTRO, P.P., K.G. AU, C.T. WALSH, G.A. BERCHTOLD. 1984. Trans-6-amino-5-[(1-carboxyethyl)oxy]-1,3-cyclohexadiene-1-carboxylic acid: An intermediate in the biosynthesis of anthranilate from chorismate. J. Am. Chem. Soc. 106: 2443–2444.CrossRefGoogle Scholar
  21. 21.
    TENG, C.-Y.P., B. GANEM, S.Z. DOKTOR, B.P. NICHOLS, R.K. BHATNAGAR, L.C. VINING. 1985. Total synthesis of (±)-4-amino-4-deoxychorismic acid: A key intermediate in the biosynthesis of para-aminobenzoic acid and L-para-aminophenylalanine. J. Am. Chem. Soc. 107: 5008–5009.CrossRefGoogle Scholar
  22. 22.
    CHRISTOPHERSON, R.E., J.F. MORRISON. 1983. Synthesis and separation of tritium-labeled intermediates of the shikimate pathway. Arch. Biochem. Biophys. 220: 444–450.CrossRefGoogle Scholar
  23. 23.
    ZAMIR, L.O., C. LUTHE. 1984. Chemistry of shikimic acid derivatives. Synthesis of specifically labeled shikimic acid at C-3 or C-4. Can. J. Chem. 62: 1169–1175.CrossRefGoogle Scholar
  24. 24.
    HOARE, J.H., G.A. BERCHTOLD. 1984. Chemical synthesis of stereoselectively labeled [9–2H,3H]chorismate. J. Am. Chem. Soc. 106: 2700–2701.CrossRefGoogle Scholar
  25. 25.
    SOGO, S.G., T.S. WIDLANSKI, J.H. HOARE, C.E. GRIMSHAW, G.A. BERCHTOLD, J.R. KNOWLES. 1984. Stereochemistry of the rearrangement of chorismate to prephenate: Chorismate mutase involves a chair transition state. J. Am. Chem. Soc. 106: 2701–2703.CrossRefGoogle Scholar
  26. 26.
    MCCANDLISS, R.J., K.M. HERRMANN. 1979. Immunological studies on 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase isoenzymes. J. Biol. Chem. 254: 3761–3764.Google Scholar
  27. 27.
    SHULTZ, J., M.A. HERMODSON, K.M. HERRMANN. 1981. A comparison of the amino-terminal sequences of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase isoenzymes from Escherichia coli. FEBS Lett. 131: 108–110CrossRefGoogle Scholar
  28. 28.
    SHULTZ, J., M.A. HERMODSON, C.C. GARNER, K.M. HERRMANN. 1984. The nucleotide sequence of the aroF gene of Escherichia coli and the amino acid sequence of the encoded protein, the tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. J. Biol. Chem. 259: 9655–9661.Google Scholar
  29. 29.
    HERRMANN, K.M., J. SHULTZ, M.A. HERMODSON. 1980. Sequence homology between the tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Escherichia coli and hemerythrin from Sipunculida. J. Biol. Chem. 255: 7079–7081.Google Scholar
  30. 30.
    STEINRÜCKEN, H.C., N. AMRHEIN. 1984. 5-Enolpyruvyl-shikimate-3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosphate [N-(phosphonomethyl)glycine]. Eur. J. Biochem. 143: 351–357.CrossRefGoogle Scholar
  31. 31.
    BONDINELL, W.E., J. VNEK, P.F. KNOWLES, M. SPRECHER, D.B. SPRINSON. 1971. On the mechanism of 5-enol-pyruvylshikimate 3-phosphate synthetase. J. Biol. Chem. 246: 6191–6196.Google Scholar
  32. 32.
    IFE, R.J., L.F. BALL, P. LOWE, E. HASLAM. 1976. The shikimate pathway. Part V. Chorismic acid and chorismate mutase. J. Chem. Soc., Perkin Trans. I. 1776–1783.CrossRefGoogle Scholar
  33. 33.
    ANTON, D.L., L. HEDSTROM, S.M. FISH, R.H. ABELES. 1983. Mechanism of enolpyruvylshikimate-3-phosphate synthase. Exchange of phosphoenolpyruvate with solvent protons. Biochemistry 22: 5903–5908.CrossRefGoogle Scholar
  34. 34.
    GRIMSHAW, C.E., S.G. SOGO, S.D. COPLEY, J.R. KNOWLES. 1984. Synthesis of stereoselectively labeled [2H, 3H]chorismate and the stereochemical course of enolpyruvoylshikimate-3-phosphate synthetase. J. Am. Chem. Soc. 106: 2699–2700.CrossRefGoogle Scholar
  35. 35.
    FLOSS, H.G. 1979. The shikimate pathway. In T. Swain, J.B. Harborne, C.F. Van Sumere, eds., op. cit. Reference 1, pp. 59–89.Google Scholar
  36. 36.
    LEE, J.J., Y. ASANO, T.-L. SHIEH, F. SPREAFICO, K. LEE, H.G. FLOSS. 1984. Steric course of the 5-enolpyruvylshikimate-3-phosphate synthetase and anthranilate synthetase reactions. J. Am. Chem. Soc. 106: 3367–3368.CrossRefGoogle Scholar
  37. 37.
    ASANO, Y., J.J. LEE, T.-L. SHIEH, F. SPREAFICO, C. KOWAL, H.G. FLOSS. 1985. Steric course of the reactions catalyzed by 5-enolpyruvylshikimate-3-phosphate synthase, chorismate mutase and anthranilate synthase. J. Amer. Chem. Soc. 107, 4314–4320.CrossRefGoogle Scholar
  38. 38.
    ANDREWS, P.R., E.N. CAIN, E. RIZZARDO, G.D. SMITH. 1977. Rearrangement of chorismate to prephenate. Use of chorismate mutase inhibitors to define the transition state structure. Biochemistry 16: 4848–4852.CrossRefGoogle Scholar
  39. 39.
    ANDREWS, P.R., R.C. HADDON. 1979. Molecular orbital studies on enzyme catalyzed reactions. Rearrangements of chorismate to prephenate. Aust. J. Chem. 32: 1921–1929.CrossRefGoogle Scholar
  40. 40.
    MILES, E.W. 1979. Tryptophan synthase: Structure, function, and subunit interaction. Adv. Enzymol. 49: 127–186.Google Scholar
  41. 41.
    SNELL, E.E. 1975. Tryptophanase: Structure, catalytic activities, and mechanism of action. Adv. Enzymol. 42: 287–333.Google Scholar
  42. 42.
    MILES, E.W., D.R. HOUCK, H.G. FLOSS. 1982. Stereochemistry of sodium borohydride reduction of tryptophan synthase from Escherichia coli and its amino acid Schiff’s bases. J. Biol. Chem. 257: 14203–14210.Google Scholar
  43. 43.
    PHILLIPS, R.S., E.W. MILES, L.A. COHEN. 1984. Interaction of tryptophan synthase, tryptophanase and pyridoxal phosphate with oxindolyl-L-alanine and 2,3-dihydro-L-tryptophan: Support for an indolenine intermediate in tryptophan metabolism. Biochemistry 23: 6228–6234.CrossRefGoogle Scholar
  44. 44.
    PHILLIPS, R.S., E.W. MILES, L.A. COHEN. 1985. Differential inhibition of tryptophan synthase and of tryptophanase by the two diastereoisomers of 2,3-dihydro-L-tryptophan: Implications for the stereochemistry of the reaction intermediates. J. Biol. Chem. 260: 14665–14670.Google Scholar
  45. 45.
    SCHÖPPNER, A., H. KINDL. 1984. Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J. Biol. Chem. 259: 6806–6811.Google Scholar
  46. 46.
    ROLFS, C.-H., H. KINDL. 1984. Stilbene synthase and chalcone synthase. Two different constitutive enzymes in cultured cells of Picea excelsa. Plant Physiol. 75: 489–492.CrossRefGoogle Scholar
  47. 47.
    HAHLBROCK, K., H. GRISEBACH. 1979. Enzymatic controls in the biosynthesis of lignin and flavonoids. Annu. Rev. Plant Physiol. 30: 105–130.CrossRefGoogle Scholar
  48. 48.
    KREUZALER, F., H. RAGG, E. FAUTZ, D.N. KUHN, K. HAHLBROCK. 1983. UV-Induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc. Natl. Acad. Sci. USA 80: 2591–2593.CrossRefGoogle Scholar
  49. 49.
    EBEL, J., W.E. SCHMIDT, R. LOYAL. 1984. Phytoalexin synthesis in soybean cells: Elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch. Biochem. Biophys. 232: 240–248.CrossRefGoogle Scholar
  50. 50.
    BENTLEY, R., R. MEGANATHAN. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Revs. 46: 241–280.Google Scholar
  51. 51.
    BENTLEY, R., R. MEGANATHAN. 1983. Vitamin K biosynthesis in bacteria — Precursors, intermediates, enzymes and genes. J. Nat. Prod. 46: 44–59.CrossRefGoogle Scholar
  52. 52.
    MEGANATHAN, R., R. BENTLEY. 1983. Thiamine pyrophosphate requirement for o-succinylbenzoic acid synthesis in Escherichia coli and evidence for an intermediate. J. Bacteriol. 153: 739–746.Google Scholar
  53. 53.
    WEISCHE, A., E. LEISTNER. 1985. Cell free synthesis of o-succinylbenzoic acid from iso-chorismic acid. The key reaction in vitamin K2 (menaquinone) biosynthesis. Tetrahedron Lett. 1487–1490.Google Scholar
  54. 54.
    KOLKMANN, R., G. KNAUEL, S. ARENDT, E. LEISTNER. 1982. Site of activation of o-succinylbenzoic acid during its conversion to menaquinones (vitamin K2). FEBS Lett. 137: 53–56.CrossRefGoogle Scholar
  55. 55.
    KOLKMANN, R., E. LEISTNER. 1985. Synthesis and revised structure of the o-succinylbenzoic acid coenzyme A ester, an intermediate in menaquinone biosynthesis. Tetrahedron Lett. 1703–1704.Google Scholar
  56. 56.
    RINEHART, K.L. JR., M. POTGIETER, W.-Z. JIN, C.J. PEARCE, D.A. WRIGHT, J.L.C. WRIGHT, J.A. WALTER, A.G. MCINNES. 1982. Biosynthetic studies on antibiotics employing stable isotopes. In Trends in Antibiotic Research. Genetics, Biosyntheses, Actions and New Substances. (H. Umezawa, A.L. Demain, T. Hata, C.R. Hutchinson, eds.), Japan Antibiotics Res. Assoc., Tokyo, pp. 353–389.Google Scholar
  57. 57.
    HORNEMANN, U., J.H. EGGERT, D.P. HONOR. 1980. Role of D-[4–14C]erythrose and [3–14C]pyruvate in the biosynthesis of the meta-C-C6-N unit of the mitomycin antibiotics in Streptomyces verticillatus. J. Chem. Soc, Chem. Commun. 11–13.Google Scholar
  58. 58.
    GHISALBA, O., J. NüESCH. 1981. A genetic approach to the biosynthesis of the rifamycin chromophore in Nocardia mediterrani. IV. Identification of 3-amino-5-hydroxybenzoic acid as a direct precursor of the seven-carbon amino starter unit. J. Antibiot. 34: 64–71.CrossRefGoogle Scholar
  59. 59.
    KIRBY, J.J., I.A. MCDONALD, R.W. RICKARDS. 1980. 3-Amino-5-hydroxybenzoic acid as a key intermediate in ansamycin and maytansinoid biosynthesis. J. Chem. Soc., Chem. Commun. 768–769.Google Scholar
  60. 60.
    ANDERSON, M.G., J.J. KIRBY, R.W. RICKARDS, J.M. ROTHSCHILD. 1980. Biosynthesis of the mitomycin antibiotics from 3-amino-5-hydroxybenzoic acid. J. Chem. Soc, Chem. Commun. 1277–1278.Google Scholar
  61. 61.
    TSAO, S.-W. 1983. Biosynthesis of microbial metabolites. Part I: Studies on a red pigment from Streptomyces. Part II: Tracer studies on ansamycin type antibiotics. Ph.D. thesis, Purdue University.Google Scholar
  62. 62.
    RINEHART, K.L., M. POTGIETER, D.A. WRIGHT. 1982. Use of D-[13C6]glucose together with 13C-depleted glucose and homonuclear 13C decoupling to identify the labeling pattern by this precursor of the “m-C7N” unit of geldanamycin. J. Am. Chem. Soc. 104: 2649–2652.CrossRefGoogle Scholar
  63. 63.
    RINEHART, K.L., M. POTGIETER, D.L. DELAWARE, H. SETO. 1981. Direct evidence from multiple 13C labeling and homonuclear decoupling for the labeling pattern by glucose of the m-aminobenzoyl (C7N) unit of pactamycin. J. Am. Chem. Soc. 103: 2099–2101.CrossRefGoogle Scholar
  64. 64.
    Unpublished results.Google Scholar
  65. 65.
    TAKEDA, Y., V. MAK, C.-C. CHANG, H.G. FLOSS. 1984. Biosynthesis of ketomycin. J. Antibiot. 37: 868–875.CrossRefGoogle Scholar
  66. 66.
    SHIMADA, K., D.J. HOOK, G.F. WARNER, H.G. FLOSS. 1978. Biosynthesis of the antibiotic 2,5-dihydrophenyl-alanine by Streptomyces arenae. Biochemistry 17: 3054–3058.CrossRefGoogle Scholar
  67. 67.
    BALDWIN, G.S., B.E. DAVIDSON. 1983. Kinetic studies on the mechanism of chorismate mutase/prephenate dehydratase from Escherichia coli. Biochim. Biophys. Acta 742: 374–383.CrossRefGoogle Scholar
  68. 68.
    GYGAX, D., M. CHRIST, O. GHISALBA, J. NüESCH. 1982. Regulation of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase in Nocardia mediterrani. FEMS Microbiol. Lett. 15: 169–173.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Heinz G. Floss
    • 1
  1. 1.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations