Imaging Techniques in Pharmacology

  • Alan J. Fischman
  • Robert H. Rubin
  • H. William Strauss
Part of the NATO ASI Series book series (NSSA, volume 221)


The development of new drugs is increasingly based on a knowledge of membrane and cellular biochemistry, rather than screening large numbers of samples of soil, or toxins. These drugs are “designed”, rather than “discovered.” Following identification of a likely compound in-vitro, careful studies are performed in animal models to determine the pharmacokinetics and pharmacodynamics of the drug. Once identified as safe and efficacious in animal trials, the pharmacokinetic profile of the drug is determined man. The clinical effects and side effects are then assessed in well controlled, multi-center studies involving large numbers of patients. The challenge to the clinician and pharmacologist participating in these studies has been to translate the exquisite measurements that can be made in animal models to the effective treatment of human disease, despite the lesser data base that can be gathered in man. Issues of dosing schedules, determination of tissue concentration, assessment of the pharmacodynamic effects of therapy, and the effects of therapy on normal and abnormal cell function are less easily assessed in man, because of the need for noninvasive methods.


Angiotensin Converting Enzyme Inhibitor Renal Blood Flow Renal Artery Stenosis Aldose Reductase Chemical Shift Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE, Fuccello AJ, Rubin RH, Strauss HW, Fischman AJ., 1990. 99mTc human polyclonal IgG radiolabeled via the hydrazino nicatinamide derivative for imaging focal sites of infection in rats. J Nucl Med 31:2022.Google Scholar
  2. Bolton AE, Hunter WM., 1973. The labeling to high specific radioactivities by conjugation to a 125I-containing alkylating agent. Biochem. J. 133: 529.PubMedGoogle Scholar
  3. Creese I, Burt DR, Snyder SH., 1976. Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs. Science 192: 481.PubMedCrossRefGoogle Scholar
  4. Farde L, Ericksson L, Blomquist G, Halldin C., 1989. Kinetic analysis of central [11C] raclopride binding to D2-Dopamine receptors studied by PET - a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9: 696.PubMedCrossRefGoogle Scholar
  5. Farde L, Wiesel FA, Jannson P, Uppfeldt G, Wahlen A, Sedvall G., 1988. An open label trial of raclopride in acute schizophrenia. Confirmation of D2-dopamine receptor occupancy by PET. Psychopharmacology 94: 1.PubMedCrossRefGoogle Scholar
  6. Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordstrom AL, Hall H, Sedvalle G., 1990. D2-dopainine receptors in neuroleptic-naive schizophrenic patients. Arch Gen Psych 47: 213.CrossRefGoogle Scholar
  7. Fischman AJ, Rubin RH, Khaw BA, Callahan RJ, Wilkinson R Keech F, Dragotakes S, Kramer P, LaMuraglia GM, Lind S, Strauss HW., 1988. Detection of acute inflammation with 111In-labeled non-specific polyclonal IgG. Semin Nucl Med 18: 335.PubMedCrossRefGoogle Scholar
  8. Flamm SD, TaId J, Moore R, Lewis SF. Keech F, Maltais F, Ahmad M, Callahan R, Dragotakes S, Alpert N, Strauss HW., 1990. Redistribution of regional organ blood volume and effect on cardiac fubction in relation to upright exercise intensity in healthy human subjects. Circulation 81:1550.Google Scholar
  9. Griffey RH, Eaton RP, Sibbitt RR, Sibbitt WL, Bicknell JM., 1988. Diabetic neuropathy. Structural analysis of nerve hydration by magnetic resonance spectroscopy. JAMA 260: 2872.Google Scholar
  10. Halama JR, Gatley SJ, DeGrado TR, Bernstein DR, Ng CK, Holden JE., 1984. Validation of 3-deoxy-3-fluoro-D-glucose as a glucose transport analog in rat heart. Amer J Physiol 247: H754.PubMedGoogle Scholar
  11. Humphrey MJ, Jevons S, Tarbit MH., 1985. Pharmacokinetic evaluation of UK-49,858, a metabolically stable triazole antifungal drug, in animals and humans. 6Antimicrob Agents Chemother 28: 648.Google Scholar
  12. Hwang DR, Mathias CJ, Welch MJ, Lloyd J, Petrillo EW, Eckelman WC., 1990. Synthesis and biodistribution of [18-F]-1abeled angiotensin converting enzyme inhibitor. [18-F] Fluoro captomil. J Nucl Med 31: P738.Google Scholar
  13. Kayden DS, Wackers FJ, Zaret BJ., 1990. Silent left ventricular dysfunction during routine activity after thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol 15: 1500.PubMedCrossRefGoogle Scholar
  14. Krejcarek GE, Tucker KL., 1977. Covalent attachment of chelating groups to ömacromolecules. Biochem Biophys Res Comm 77: 581.PubMedCrossRefGoogle Scholar
  15. Kwee IL, Nakada T, Card PJ., 1987. Noninvasive demonstration of in vivo 3- fluoro-3-deoxy-D-glucose metabolism in rat brain by 19F nuclear magnetic resonance spectroscopy: suitable probe for monitoring cerebral aldose reductase activities. J Neurochem 49: 428.PubMedCrossRefGoogle Scholar
  16. Morrell EM, Tompldns RG, Fischman AJ, Strauss HW, Rubin RH, Willdnson RA, Yarmush MY., 1989. An autoradiographic method for quantitation of radiolabeled proteins in tissue using Indium-111. J Nucl Med 30: 1538.PubMedGoogle Scholar
  17. Nakada T, Kwee IL., 1989. One-dimensional chemical shift imaging of fluorinated neuroleptics in rat brain in vivo by 19F NMR rotating frame zeumatography. Magn Reson Imaging 7: 543.PubMedCrossRefGoogle Scholar
  18. Nakada T, Kwee IL, Griffey BV, Griffey RH., 1988. F-19 MR imaging of glucose metabolism in the rabbit. Radiology 168: 823.PubMedGoogle Scholar
  19. Owens SE, Thatcher N, Sharma H, Adam N, Harrison R, Smith A, Zald A, Baer JC, McAuliffe CA, Crowther D., 1985. In vivo distribution studies of radioac-tively labelled platinum complexes; cis-dichlorodiammine platinum(II), cis-trans-dichlorodihydroxy-bis-(isopropylamine platinum(IV), cis-dichloro-bis-cyclo-propylamine platinum(II), and cis-diamino 1,1-cyclobutanedicarboxylate platinum (II). Cancer Chemother Pharmacol 14: 253.PubMedCrossRefGoogle Scholar
  20. Pike VW, Palmer AJ, Horlock, Perun TJ, Freiberg LA, Dunnigan DA, Liss RH., 1982. Preparation of carbon-11 labeled antibiotic-erythromycin lactobionate. J Chem Soc Chem Comm, page 173.Google Scholar
  21. Port RE, Strauss LG, Clorius JH., 1989. Positron emission tomography after brief infusion of 5-[18F] uracil: linear model for the kinetics of 18F radioactivity in tumors. Onnkologia 12: 51.CrossRefGoogle Scholar
  22. Rubin RH, Fischman AJ, Callahan RJ, Khaw BA, Keech F, Ahmad M, Wilkinson RA, Strauss HW., 1989. The utility of 111In-labeled nonspecific immunoglobulin scanning in the detection of focal inflammation. N Engl J Med 321: 935.PubMedCrossRefGoogle Scholar
  23. Rubin RH, Fischman AJ, Nedelman M, Wilkinson R, Callahan RJ, Khaw BA, Hansen WP, Kramer P, Strauss HW., 1989. The use. of radiolabeled, nonspecific polyclonal human immunoglobulin in the detection of focal inflammation by scintigraphy: comparison with gallium-67 citrate and technetium-99m labeled albumin. J Nucl Med 30: 385.PubMedGoogle Scholar
  24. Schnitzer JJ, Morell EM, Colton CK, Smith KA, Stemerman MB., 1987. Absolute quantitative autoradiography of low concentrations of 125I-labeled proteins in arterial tissue. J Histochem Cytochem 35: 1439.PubMedCrossRefGoogle Scholar
  25. Som P, Yonekura Y, Oster ZH, Meyer MA, Pelletteri ML, Fowler JS, MacGregor RR, Russell JA, Wolf AP, Fand I, McNally, Brill AB., 1983. Quantitative autoradiography with radiopharmaceuticals, Part 2: Application in radiopharmaceutical research: concise communication. J Nucl Med 24: 238.PubMedGoogle Scholar
  26. Stevens AN, Morris PG, Iles RA, Sheldon PW, Martino R., 1984. 5-Fluorouracil metabolism monitored by in vivo 19F NMR. Br J Cancer 50:113.Google Scholar
  27. Svensson SE, Lomsky M, Olsson L, Persson S, Strauss HW, Westling H., 1982. Non-invasive determination of the distribution of cardiac output in man at rest and during exercise. Clin Physiol 2: 467.PubMedCrossRefGoogle Scholar
  28. Tamaki N, Alpert NA, Rabito CA, Barlai-Kovach M, Correia JA, Strauss HW., 1988. The effect of captopril on renal blood flow in renal artery stenosis assessed by positron Tomography with Rubidium-82. Hypertension 11: 217.PubMedGoogle Scholar
  29. Wilkinson RA, Fischman AJ, Rubin RH, Strauss HW., 1989. Monitoring response to antimicrobial therapy with 111In-labeled polyclonal IgG. J Nucl Med 30: P890.Google Scholar
  30. Wilson RA, Sullivan PJ, Moore RH, Zielonka JS, Alpert NM, Boucher CA, McKusick KA, Strauss HW., 1983. An ambulatory ventricular function monitor: validation and preliminary clinical results. Am J Cardiol 52: 601.PubMedCrossRefGoogle Scholar
  31. Wolf W, Albright MJ, Silver MS, Weber H, Reichardt U, Sauer R., 1987. Fluorine-19 NMR spectroscopic studies of the metabolism of 5-fluorouracil in the liver of patients undergoing chemotherapy. Magn Res Imaging 5: 165.CrossRefGoogle Scholar
  32. Wolf W, Presant CA, Servis KL, El-Tahtawy A, Albright MJ, Barker PB, Ring R, Atkinson D, Ong R, King M, Singh M, Ray M, Wiseman C, Balayney D, Shani J., 1990. Tumor trapping of 5-fluorouracil: In vivo 19F NMR spectroscopic pharmacokinetics in tumor-bearing humans and rabbits. Proc Natl Acad Sci USA 87: 492.PubMedCrossRefGoogle Scholar
  33. Wollmer P, Rhodes CG, Pike VW, Silvester DJ, Pride NB, Sanders A, Palmer AJ, Liss RH., 1982. Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron emission tomography. Lancet 2: 1361.PubMedCrossRefGoogle Scholar
  34. Yonekura Y, Brill AB, Som P, Bennett GW, Fand I., 1983. Quantitative autoradiography with radiopharmaceuticals, Part 1: Digital film-analysis system by videodensitometry: concise communication. J Nucl Med 24: 231.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alan J. Fischman
    • 1
    • 2
  • Robert H. Rubin
    • 1
    • 2
  • H. William Strauss
    • 1
    • 2
  1. 1.Division of Nuclear Medicine of the Department of Radiology Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Departments of Radiology and MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations