Physiologically Based Pharmacokinetic Models: Applications in Carcinogenic Risk Assessment

  • D. Krewski
  • J. R. Withey
  • L. F. Ku
  • C. C. Travis
Part of the NATO ASI Series book series (NSSA, volume 221)


Pharmacokinetics is the study of the absorption, distribution, metabolism and elimination of chemicals in biological systems. As such, it provides a means of resolving some of the ambiguities in exposure assessment and of evaluating the scientific assumptions upon which risk assessment is based.


Partition Coefficient Pharmacokinetic Model PBPK Model Blood Flow Rate Inhalation Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolph, E.F., 1949. Quantitative Relations in the Physiological Constitutions of Mammmals. Science 109: 579.PubMedCrossRefGoogle Scholar
  2. Aksoy, M. and S. Erdem, 1978. Follow-up Study on the Development of Leukemia in 44 Pancytopenic Patients with Chronic Exposure to Benzene. Blood 52: 285.PubMedGoogle Scholar
  3. Andersen, M.E., R.L. Archer and M.G. MacNaughton, 1984. A Physiological Model of the Intravenous and Inhalation Pharmacokinetics of Three Dihalomethanes-CH2C12, CH2BrCl, CH2Br2 in the Rat. Toxicologist 4: 111.Google Scholar
  4. Andersen, M.E., H.J.III. Clewell, M.L. Gargas, F.A. Smith and R.H. Reitz, 1987a. Physiologically Based Pharmacokinetics and the Risk Assessment Process for Methylene Chloride. Toxicol. Appl. Pharmacol. 87: 185.PubMedCrossRefGoogle Scholar
  5. Andersen, M.E., M.L. Gargas, H.J. Clewell III, and K.M. Severyn, 1987b. Quantive Evaluation of the Metabolic Interactions between Trichloroethylene and 1,1-Dichloroethylene in Vivo Using Gas Uptake Methods. Toxicol. Appl. Pharmacol. 89: 149.PubMedCrossRefGoogle Scholar
  6. Angelo, M. and A. Pritchard, 1984. Simulations of Methylene Chloride Pharmacokinetics Using a Physiologically-Based Model. Toxicol. Appl. Pharmacol. 4: 329.Google Scholar
  7. Angelo, M.J. and A.B. Pritchard, 1987. Route to Route Extrapolation of Dichloromethane Exposure Using a Physiological Pharmacokinetic Procedure. Pharmacokinetics in Risk Assessment: Drinking Water and Health. Vol. 8: 254.Google Scholar
  8. Armitage, P., 1985. Multistage Models of Carcinogenesis. Environ. Health Perspect. 63: 195.PubMedCrossRefGoogle Scholar
  9. Armitage, P. and R. Doll, 1961. Stochastic Models for Carcinogenesis. In: “Proceedings of the Fourth Berkeley Symposium” ( J. Neyman, ed.), page 19. University of Calfironia Press, Berkeley, CaliforniaGoogle Scholar
  10. Arms, A.D. and C.C. Travis, 1988. Reference Physiological Parmeters in Pharmacokinetic Modelling. U. S. EPA Final Report. EPA 600/6–88/004.Google Scholar
  11. Astrand, I., 1983. Effect of Physical Exercise on Uptake. Distribution and Elimination of Vapors in Man. In: “Modeling of Inhalation Exposure to Vapor: Uptake, Distribution and Elimination” ( V. Fiserova-Bergerova, ed.), Volume 2, page 107. CRC Press, Boca Raton, Florida.Google Scholar
  12. Bechtold, W.E., P.J. Sabourin and R.F. Henderson, 1988. A Reverse Isotope Dilution Method for Determining Benzene and Metabolites in tissues. J. Anal. Toxicol. 12: 176.PubMedGoogle Scholar
  13. Birnbaum, L.S., D.M. Decad and H.B. Matthews, 1980. Disposition and Excretion of 2,3,7,8 Tetrachlorodibenzofuran in the Rat. Toxicol. Appl. Pharmacol. 55: 342.PubMedCrossRefGoogle Scholar
  14. Birnbaum, L.S., G.M. Decad, H.B. Matthews and E.E. McConnell, 1981. Fate of 2,3,7,8-tetraclorodibenzofuran in the Monkey. Toxicol. Appl. Pharmacol. 57: 189.PubMedCrossRefGoogle Scholar
  15. Bischoff, K.B., 1987. Physiologically Based Pharmacokinetic Modeling. In: “Pharmacokinetics in Risk Assessment: Drinking Water and Health”, Vol. 8, page 36. National Academy Press, Washington, D.C.Google Scholar
  16. Bischoff, K.B. and R.G. Brown, 1966. Drug Distribution in Mammals. Chemical Engineering Progress Symposium Series 66: 33.Google Scholar
  17. Bischoff, K.B., R.L. Dedrick and D.S. Zaharko, 1970. Preliminary Model for Methotrexate Pharmacokinetics. J. Pharm. Sci. 59: 149.PubMedCrossRefGoogle Scholar
  18. Bischoff, K.B., R.L. Dedrick, D.S. Zaharko and J.A. Longstreth, 1971. Methotrexate Pharmacokinetics. J. Pharm. Sci. 60: 1128.PubMedCrossRefGoogle Scholar
  19. Bischoff, R.L., and R.L. Dedrick, 1968. Thiopental Pharmacokinetics. J. Pharm. Sci. 57: 1346.PubMedCrossRefGoogle Scholar
  20. Boxenbaum, H., 1982. Interspecies Scaling, Allometry, Physiological Time, and the Ground Plan of Pharmacokinetics. J. Pharmacokin. Biopharm. 10: 201.CrossRefGoogle Scholar
  21. Boxenbaum, H., 1984. Interspecies Pharmacokinetic Scaling and the Evolutionary-comparative Paradigm. Drug Metab. Rev. 15: 1071.Google Scholar
  22. Boxenbaum, H. and R. D’Souza, 1990. Interspecies Pharmacokinetic Scaling, Biological Design and Neoteny. Adv. Drug Res. 19: 139.Google Scholar
  23. Buben, J.A., and E.J. O’Flaherty, 1985. Delineation of the Role of Metabolism in the Hepatoxicity of Trichloroethylene and Pechloroethylene. A Dose-Effect study. Toxicol. Appl. Pharmacol. 78: 105.PubMedCrossRefGoogle Scholar
  24. Bungay, P.M., R.L. Dedrick and H.B. Matthews, 1979. Pharmacokinetics of Halogenated Hydrocarbons. Ann. N. Y. Acad. Sci. 7: 257.Google Scholar
  25. Cohn, W.J., J.J Boylan, R.V. Blanke, M.W Fariss, J.R. Howell and P.S. Guzelian, 1978. Treatment of Chlodecone (Kepone) Toxicity with Cholestyramine. Results of a Controlled Clinical study. New Engl. J. Med. 293: 243.Google Scholar
  26. Collins, B.T., 1990. Pharmacokinetic Models. In: “Handbook of In Vivo Toxicity Testing” ( D.L. Arnold, H.C. Grice, and D.R. Krewski, eds.), page 339. Academic Press, New York.Google Scholar
  27. Crump, K.S., 1984. An Improved Procedure for Low-Dose Carcinogenic Risk Assessment from Animal Data. J. Environ. Pathol. Toxicol. Oncol. 6: 339.Google Scholar
  28. Decad, G.M., L.S. Birnbaum and H.B. Matthews, 1981a. 2,3,7,8tretachlorodibenzofuran Tissue Distribution and Excretion in Guinea Pigs. Toxicol. Appl. Pharmacol. 57: 321.Google Scholar
  29. Decad, G.M., L.S. Birnbaum and H.B. Matthews 1981b. Distribution and Excretion of 2,3,7,8-tetrachlorodibenzofuran in C57BL/6J and DBA/2J Mice. Toxicol. Appl. Pharmacol. 59: 564.PubMedCrossRefGoogle Scholar
  30. Dedrick, R.L., 1973a. Physiological Pharmacokinetics. J. Dyn. Syst. Mess. Cant. Trans. ASME, September 1973, 255.Google Scholar
  31. Dedrick, R.L., 1973b. Animal scale-up. J. Pharmacokin. Biopharm. 1:435. Dedrick, R.L. and K.B. Bischoff, 1968. Pharmacokinetics in Applications of the Artificial Kidney. Chem. Eng. Prog. Symp. Series 84 (64): 32.Google Scholar
  32. Dedrick, R.L. and K.B. Bischoff, 1980. Species Similarities in Pharmacokinetics. Fed. Proc. 39: 54.PubMedGoogle Scholar
  33. Dedrick, R.L., D.D. Forrester and H.W. Ho., 1972. In Vitro-In Vivo Correlation of Drug Metabolism-Determination of 1-B-arabinofuransylcytosine. Biochem. Pharmacol. 21: 1.PubMedCrossRefGoogle Scholar
  34. Dedrick, R.L., D.D. Forrester, J.N. Cannon, S.M. El Dareer and L.B. Mellett, 1973. Pharmacokinetics of 1-B-arabinofuranosylcytosine. Biochem. Pharmacol. 22: 2405.PubMedCrossRefGoogle Scholar
  35. Dekant, W., M. Metzler and D. Henschler, 1986. Identification of S-1, 2dichlorovinyl-N-acetyl Cystine as a Uninary Metabolite of Trichloroethylene. A Possible Explanation for its Nephrocarcinogencity in Male Rats. Biochem. Pharmacol. 35: 2455.Google Scholar
  36. Eastmond, D.A., M.T. Smith and R.D. Irons, 1987. An Interaction of Benzene Metabolites Reproduces the Myelotoxicity Observed with Benzene Exposure. Toxicol. Appl. Pharmacol. 91: 85.PubMedCrossRefGoogle Scholar
  37. Egle, J.L., S.B. Fernandez, P.S. Guzellian and J.F. Borzelleca, 1978. Distribution and Excretion of Chlodecone (Kepone) in the Rat. Drug Metab. Dispos. 6: 91.Google Scholar
  38. European Chemical Industry, Ecology and Toxicology Centre, 1989. Methylene Chloride ( Dichloromethane ): An Overview of Experimental Work Investigating Specie Differences in Carcinogenicity and their Relevance to Man. Technical Report No 34.Google Scholar
  39. Farber, E. and M.M. Fisher, 1980. “Toxic Injury of the Liver”, page 569. Marcel Dekker. New York.Google Scholar
  40. Farrar, D., B. Allen, K. Crump and A. Shipp, 1989. Evaluation of Uncertainty in Input Parameters to Pharmacokinetic Models and the Resulting Uncertainy in Output. Toxicol. Lett. 49: 371.PubMedCrossRefGoogle Scholar
  41. Fernandez, J.G., P.O. Droz, B.E. Humbert and J.R. Caperos, 1977. Trichloroethylene Exposure: Simulation of Uptake, Excreation, and Metabolism Using a Mathematical Model. Br. J. Ind. Med. 34: 43.PubMedGoogle Scholar
  42. Fernandez, J.G., J. Guberan and J. Caperos, 1976. Experimental Human Exposures to Tetrachloroethylene Vapor and Elimination in Breath after Inhalation. Am. Ind. Hyg. Assoc. J. 37: 143.PubMedCrossRefGoogle Scholar
  43. Fiserova-Bergerova, V., 1983a. Physiological Models for Pulmonary Administration and Elimination Inert Vapors And Gases. In: “Modelling of Inhalation Exposure or Vapors: Uptake, Distribution, and Elimination” ( V. Fiserova-Bergerova, ed.), Vol. 1, page 73. CRC Press., Boca Raton, Florida.Google Scholar
  44. Fiserova-Bergerova, V., 1983b. Gases and their Solubility: A Review of Fundamentals. In: “Modeling of Inhalation Exposure to Vapors: Uptake, Distribution, and Elimination” ( V. Fiserova-Bergerova, ed.), Vol. 1, page 3. CRC Press, Boca Raton, Florida.Google Scholar
  45. Fiserova-Bergerova, V., 1985. Toxicokinetics of Organic Solvents. Scand. J. Work Environ. Health. 11: 7.PubMedCrossRefGoogle Scholar
  46. Fiserova-Bergerova, V. and H.C. Hughes, 1983. Species Differences in Bioavailability of Inhaled Vapors and Gases. In: “Modeling of Inhalation Exposure to Vaports: Uptake, Distribution, and Elimination” ( V. FiserovaBergerova, ed.), Vol. 2, page 97. CRC Press., Boca Raton, Florida.Google Scholar
  47. Gargas, M., H. Clewell and M. Andersen, 1987. Metabolism of Inhaled Dihalomethanes In Vitro: Differentiation of Kinetic Constants for Two Independent Pathways. Toxicol. Appl. Pharmacol. 87: 211.Google Scholar
  48. Gargas, M.L., H.J.III. Clewell and M.E. Andersen, 1986. A Physiologically-Based Approach for Determining Metabolic Constants from Gas Uptake Data. Toxicol. Appl. Pharmacol. 86: 341.PubMedCrossRefGoogle Scholar
  49. Gerlowski, L.E. and R.K Jain, 1983. Physiologically Based Pharmacokinetic Modeling: Principles and Applications. J. Pharm. Sci. 72: 1103.PubMedCrossRefGoogle Scholar
  50. Ghering, P.J. and G.E. Blau, 1977. Mechanism of Carcinogenisis: Dose Response. J. Environ. Pathol. Toxico1. 1: 63.Google Scholar
  51. Goldstein, J.A., J.R. Hass, P. Linko and D. Harvan, 1978. 2,3,7,8Tetrachlorodibenzofuran in a Commercially Available 99% Pure Polychlorinated Biphenyl Isomer Identified as the Inducer of Hepatic Cytochrome p-448 and Aryl Hydrocarbon Hydroxylase in the Rat. Drug Metab. Dispos. 6: 258.Google Scholar
  52. Golstein, B.D., 1977. Hematoxicity in Humans. J. Toxicol. Environ. Health 2: 69.Google Scholar
  53. Green, T., J.A. Nash and G. Mainwaring, 1986. Methylene Chloride (Dichloromethane): In Vitro Metabolism in Rat, Mouse, and Hamster Liver and Lung Fractions and in Human Liver Fractions. ICI Technical Report CTL/R/879. Imperial Chemical Industries, Maccelsfield, England.Google Scholar
  54. Green, T., J.A. Nash and S.J. Hill, 1987. Methylene Chloride (Dichloromethane) Glutathione-S-Transferase Metabolism in Vitro in Rat, Mouse, Hammster and Human Cytosol Fractions. ICI Technical Report, CTR/R/934. Imperial Chemical Industries, Maccelsfield, England.Google Scholar
  55. Harrison, L.I. and M. Gibaldi, 1977. Physiologically Based Pharmacokinetic Model for Digoxin Distribution and Elimination in the Rat. J. Pharm. Sci. 66: 1138.PubMedCrossRefGoogle Scholar
  56. Himmelstein, K.J. and R.J Lutz, 1979. A Review of the Applications of Physiological Based Pharmacokinetic Modeling. J. Pharmacokin. Biopharm. 7: 127.CrossRefGoogle Scholar
  57. Hoel, D.G., N.L. Kaplan and M.W. Anderson, 1983. Implication of Nonlinear Kinetics on Risk Estimation in Carcinogenisis. Science 219: 1032.PubMedCrossRefGoogle Scholar
  58. Holt, J.P., E.A. Phodes and H. Kines, 1968. Ventricular Volumes and Body Weight in Marnais. Am. J. Physiol. 215: 704.PubMedGoogle Scholar
  59. Kalf, G.F., 1987. Recent Advances in the Metabolism and Toxicology of Benzene. CRC Crit. Rev. Toxicol. 18: 141.CrossRefGoogle Scholar
  60. King, F.G., R.L. Derick, J.M. Collins and L.S. Birnbaum, 1983. Physiological Model for the Pharmacokinetics of 2,3,7,8-tetrachlorodibenzofurn in Several Species. Toxicol. Appl. Pharmacol. 67: 390.PubMedCrossRefGoogle Scholar
  61. Kleiber, M., 1961. “The Fire of Life”. Wiley, New York.Google Scholar
  62. Kociba, R.J., P.A. Keeler, C.N. Park and P.J. Gerhing, 1976. 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD): Results of a 13-Week Oral Toxicity Study in Rats. Toxicol. Appl. Pharmacol. 35: 553.Google Scholar
  63. Kociba, R.J., D.G. Keyes, J.E. Beyer, R.M. Carreon, C.E. Wade, D.A. Dittenber, R.P. Kalnins, L.E Franson, C.N. Park, S.D. Barnard, R.A. Hummel and C.G. Humiston, 1978. Results of a Two Year Chronic Oncogenicity Study and Oncogenicity Study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Rats. Toxicol. Appl. Pharmacol. 46: 279.PubMedCrossRefGoogle Scholar
  64. Krewski, D., D.J. Murdoch and J.R. Withey, 1987. The Application of Pharmacokinetic Data in Carcinogenic Risk Assessment. In: “Pharmacokinetics in Risk Assessment”. Drinking Water and Health, Volume 8, page 441. National Academy Press, Washington, D.C.Google Scholar
  65. Krewski, D., Gaylor, D.W. and M. Szyszkowicz, 1991. A Model-Free Approach to Low Dose Extrapolation. Environ. Health Perspect. 90: 279.PubMedCrossRefGoogle Scholar
  66. Krewski, D. and J. Van Ryzin, 1981. Dose Response Models for Quantal Response Toxicity Data. In: “Statistics and Related Topics” ( M. Csorgo, D. Dawson, J. N. K. Rao, and E. Saleh, eds.), page 201. North Holland, Amsterdam.Google Scholar
  67. Krewski, D., Murdoch, D. and J.R. Withey, 1989. Recent Developments in Carcinogenic Risk Assessment. Health Phys. 57 (Supplement 1): 313.PubMedCrossRefGoogle Scholar
  68. Leung, H.W., D.J. Paustenbach, F.J. Murray and M.E. Andersen, 1988. A Physiologically-Based Pharmacokinetic Model for 2,3,7,8-tetrachlorobenzo-pdioxin in C57BL/2J Mice. Toxicol. Lett. 42: 15.PubMedCrossRefGoogle Scholar
  69. Leung, H.W., D.J. Paustenbach, F.J. Murray and M.E. Andersen, 1990a. A Physiologic Pharmacokinetic Description of the Tissue Distributon and Enzyme-Inducing Properties of 2,3,4,8-tetrachlorodibenzo-p-dioxin in Mice. Toxicol. Appl. Pharmacol. 103: 399.PubMedCrossRefGoogle Scholar
  70. Leung, H.W., A. Poland, D.J. Paustenbach, F.J. Murray and M.E. Andersen, 1990b. Pharmacokinetics of [125I]-2-iode-3,7,8-trichlorodibenzo-p-dioxin in Mice: Analysis with a Physiological Modeling Approach. Toxicol. Appl. Pharmacol. 103: 411.PubMedCrossRefGoogle Scholar
  71. Levy, G., 1968. Dose Dependent Effects in Pharmacokinetics. In: “Importance of Fundamental Principles in Drug Evaluation” ( D.H. Tedeschi and R.E. Tedeschi eds.), page 141. Raven Press, New York.Google Scholar
  72. Lutz, R.J., R.L. Dedrick, H.B. Matthews, T.E. Eling and M.W. Anderson, 1977. A Preliminary Pharmacokinetic Model for Several Chlorinated Byphenyls in the Rat. Drug. Metab. Dispos. 5: 386.PubMedGoogle Scholar
  73. Mapleson, W.W., 1963. An Electric Analogue for Uptake and Exchange of Inert Gases and Other Agents. J. Appl. Physiol. 18: 197.PubMedGoogle Scholar
  74. McKenna, M.J., 1987. The Role of Studies of Absorption, Metabolism, Distribution and Elimination in Animal Selection and Extrapolation. In: “Human Risk Assessment: The Role of Animal Selection and Extrapolation” ( M.V. Roloff, ed.), page 113. Taylor & Francis, Philadelphia.Google Scholar
  75. McNutt, N.S., R.L. Amster, E.E. McConnell and F. Morris, 1975. Hepatic Lesions in Mice after Continuous Exposure to 1,1,1-Trichloroethane. Lab. Invest. 32: 642.PubMedGoogle Scholar
  76. McConnell, E.E., G.W. Lucier, R.C. Rumbaugh, P.W. Albo, D.J Harvan, J.R. Hass and M.W. Harris, 1989. Dioxin in Soil: Bioavailability after Ingestion by Rats and guinea pigs. Science 223: 1077.CrossRefGoogle Scholar
  77. Medinsky, M.A., P.J. Sabourin, G. Lucier, L.S. Birnbaum and R.F. Henderson, 1989. A Physiological Model for Simulation of Benzene Metabolism by Rats and Mice. Toxicol. Appl. Pharmacol. 99: 193.PubMedCrossRefGoogle Scholar
  78. Monster, A.C, G. Boersma and H. Steenweg, 1979. Kinetics of Tetrachloroethylene in Volunteers: Influence of Exposure Concentrations and Work Load. Int. Arch. Occup. Environ. Health. 42: 303.PubMedCrossRefGoogle Scholar
  79. Moolgavkar, S.H. and A.G. Knudson, 1981. Mutation and Cancer: A Model for Human Carcinogenesis. J. Natl. Cancer Inst. 66: 1037.PubMedGoogle Scholar
  80. Moolgavkar, S.G., E.G. Luebeck, 1990. Two-event Model for Carcinogenesis: Biological, Mathematical and Statistical Considerations. Risk Anal. 10: 323.PubMedCrossRefGoogle Scholar
  81. Moolgavkar, S.H. and D.J. Venzon, 1979. Two Event Models for Carcinogenesis. Incident Cancer in Childhood and Adult Tumors. Math. Biosci. 47: 45.CrossRefGoogle Scholar
  82. Moore, J.A., E.E. McConnell, D.W. Dalgard and M.W. Harris, 1979. Comparative Toxicity and Halogenated Dibenzofurans in Guinea Pigs, Mice and Rhesus Monkeys. Ann. N. Y. Acad. Sci. 320: 151.PubMedGoogle Scholar
  83. Munson, E.S. and D.L. Bowlers, 1967. Effects of Hyperventilation on the Rate of Cerbral Anestetic Equilibration. Anesthesiology 2: 371.Google Scholar
  84. National Research Council, 1987. “Pharmacokinetics in Risk Assessment”. Drinking Water and Health Vol. 8. National Academy Press, Washington, D.C.Google Scholar
  85. National Toxiciology Program, 1986a. Toxicology and Carcinogenesis Styudies of Tetrachloroethylene (Perchloroethylene) in F344/N Rats and B6C3Fi Mice. NTP Technical Report N. 311. U. S. Department of Health and Human Services, Washington, D.C.Google Scholar
  86. National Toxicology Program, 1986b. Toxicology and Carcinogenesis Studies of Benzene in F334/N Rats and B6C3F1 Mice. NTP Technical Report N. 289. U. S. Department of Health and Human Services, Washington, D.C.Google Scholar
  87. Office of Science and Technology Policy, 1985. Chemical Carcinogens: A Review of the Science and Associated Principles. Fed. Regist. 50: 10372.Google Scholar
  88. Paustenbach, D.J., G.P. Carlson, J.E. Christan and G.S. Born, 1986. A Comparative Study of the Study of the Pharmacokinetics of Carbon Tetrachloride on the Rat Following Repeated Inhalation Exposures of 8 and 11.5/day. Fundam. Appl. Toxicol. 6: 484.PubMedCrossRefGoogle Scholar
  89. Paustenbach, D.J., H.J.III. Clewell, M.L. Gargas and M.E. Andersen, 1988. A Physiologically-based Pharmacokinetic Model for Inhaled Carbon Tetrachloride. Toxicol. Appl. Pharmacol. 96: 191.PubMedCrossRefGoogle Scholar
  90. Pegg, D.G., J.A. Zemple, W.H. Braun and P.G. Watanabe, 1979. Disposition of (14C) Tetrachloroethylene Following Oral and Inhalation Exposure in Rats. Toxicol. Appl. Pharmacol. 51: 465.PubMedCrossRefGoogle Scholar
  91. Poland, A., E. Glover, and A.S. Glende, 1976. Stereospecific High Affinity Binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by Hepatic Cytosol. J. Biol. Chem. 251: 4936.PubMedGoogle Scholar
  92. Portier, C.J. and N.L. Kaplan, 1989. Variability of Safe Dose Estimates when using Complicated Models of the Carcinogenic Process. Fundam. Appl. Toxicol. 13: 533.PubMedCrossRefGoogle Scholar
  93. Quast, J.F., L.L. Calhoun and M.J. McKenna, 1984. 1,1,1-Trichloroethane: A Chronic Inhalation Toxicology and Oncogenic Study in Rats and Mice. Part I. Results of Findings in Mice. Toxicologist 5: 14.Google Scholar
  94. Rampy, L.W., J.F. Quast, B.K.J. Leong and P.J. Gehring, 1978. Results of Longterm Inhalaton Studies on Rats of 1,1,1-trichloroethylene and Perchloroethlene Formulation. In: “Proceedings of the 1st International congress on Toxicology” ( G.L. Plaa and W.A.M. Ducan, eds.), page 562. Academic Press, New York.Google Scholar
  95. Ramsey, J.C., and M.E. Andersen, 1984. A Physiologically Based Description of the Inhalation Pharmacokinetics of Styrene in Rats. Toxicol. Appl. Pharmacol. 73: 159.PubMedCrossRefGoogle Scholar
  96. Ramsey, J.C., J.D. Young, R. Karbowsld, M.B. Chenoweth, L.P. McCarty and W.H. Braun, 1980. Pharmacokinetics of Inhaled Styrene in Human Volunteers. Toxicol. Appl. Pharmacol 53: 54.PubMedCrossRefGoogle Scholar
  97. Reitz, R.H., J.N. McDougal, M.W. Himmelstein, R.J. Nolan and A.M. Schumann, 1988. Physiologically-based Pharmacokinetic Modeling with Methylchloroform: Implications for Interspecies, High Dose/Low Dose, and Dose Route Extrapolations. Toxicol. Appl. Pharmacol. 95: 185.PubMedCrossRefGoogle Scholar
  98. Reynolds, E.S., and M.T. Molsen, 1980. Enviromental Liver Injury. In: “Toxic Injury of the Liver, Part B”. ( E. Farber and M. Fisher, eds.), page 541. Marcel Dekker, New York.Google Scholar
  99. Richard, C. V., C. C. Travis, D. M. Hetrick, M. E. Andersen, and M. L. Gargas, 1988. Pharmacokinetics of Tetrachloroethylene. Toxicol. Appl. Pharmacol. 93: 108CrossRefGoogle Scholar
  100. Riggs, D.S., 1963. “The Mathematical Approach to Physiological Problems”. M. I. T. Press., Cambridge, Massachusetts.Google Scholar
  101. Rose, J.Q., J.C. Ramsey, T.H. Wentzler, R.A. Hummel and P.J. Gehring, 1976. The Fate of 2,3,7,8-Tetrachlorodibenzodioxin Following Single and Repeated Oral Doses to the Rat. Toxicol. Appl. Pharmacol. 36: 209.PubMedCrossRefGoogle Scholar
  102. Rusch, G.M., B.K.J. Leony and S. Laskin, 1977. Benzene Metabolism. J. Toxicol. Environ. Health 2: 23.Google Scholar
  103. Sato, A. and T. Nukajima, 1979. Partition Coefficients of Some Aromatic Hydrocarbons and Ketones in Water, Blood and Oil. Br. J. Ind. Med. 36: 231.PubMedGoogle Scholar
  104. Schmidt-Neilsen, K., 1970. Energy Metabolism, Body Size, and the Problem of Scaling. Fed. Proc. 29: 1524.Google Scholar
  105. Schumann, A.M., T.R. Fox, and P.G. Watanabe, 1982. C-Methyl Choroform (1,1,1-Trichloroethane): Pharmacokinetics in Rats and Mice Following Inhalation Exposure. Toxicol. Appl. Pharmacol. 62: 390.PubMedCrossRefGoogle Scholar
  106. Schwetz, B.A., J.M. Noris, G.L. Sparschu, V.K. Rowe, P.J. Gerhing, J.L. Emerson and C.G. Gervig, 1973. Toxicology of Chlorinated Dibenzo-p-dioxins. Environ. Health. Perspect. 5: 87.PubMedCrossRefGoogle Scholar
  107. Stahl, W.L., 1967. Scaling of Respiratory Variables in Mamals. J. Appl. Physiol. 22: 453.PubMedGoogle Scholar
  108. Stewart, R.D., E.D. Baretta, H.C. Dodd and T.R. Torkelson, 1970. ExperimentalGoogle Scholar
  109. Human Exposure to Tetrachloroetylene. Arch. Environ. Health. 20: 224.Google Scholar
  110. Takezawa, J., F.J. Miller and J.J. O’Neil, 1980. Single-breath Diffusing Capacity and Lung Volumes in Small Laboratory Animals. J. Appl. Physiol. 48: 1052.PubMedGoogle Scholar
  111. Thorslund, T.W., Brown, C.C. and G. Charnley, 1987. Biologically Motivated Cancer Risk Models. Risk Anal. 7: 109.PubMedCrossRefGoogle Scholar
  112. Travis, C.C., 1987. Interspecies and Dose-route Extrapolations. In: “Pharmacoldnetics in Risk Assessment”. Drinking Water and Health, Vol.8, page 208. National Academy Press, Washington, D.C.Google Scholar
  113. Travis, C.C., Quillen, J.L. and A.D. Arms, 1990a. Pharmacokinetics of Benzene Toxicol. Appl. Pharmacol. 102: 400.CrossRefGoogle Scholar
  114. Travis, C.C., R.K. White, and R.C. Ward 1990b. Interspecies Extrapolation of Pharmacokinetics. J. Theor. Biol. 142: 285.PubMedCrossRefGoogle Scholar
  115. Tuey, D.B., and H.B. Matthews, 1980. Use of Physiological Compartmental Model for the Rat to Describe the Pharmacokinetics of Several Chlorinated Biphenyls in the Mouse. Drug Metab. Dispos. 8: 397.Google Scholar
  116. U.S. Environmental Protection Agency, 1986. Guidelines for Carcinogen Risk Assessment. Fed. Regist. 51: 33992.Google Scholar
  117. Vander, A.J, J.H. Sherman and D.S. Luciano, 1975. “Human Physiology: The Mechanisms of Body Function”. McGraw-Hill, New York.Google Scholar
  118. Voorman, R., and S.D. Aust., 1987. Specific Binding of Polyhalogenated Aromatic Hydrocarbon Inducers of Cytochrone P-450d to the Cytochrome and Inhibition of its Estraliol 2-hydroxylase Activity. Toxicol. Appl. Pharmacol. 90: 69.PubMedCrossRefGoogle Scholar
  119. Ward, R.C., C.C. Travis, D.M. Hetrick, M.E. Andersen and M.L. Gargas, 1988. Pharmacokinetics of Tetrachloroehylene. Toxicol. Appl. Pharmacol. 93: 108.PubMedCrossRefGoogle Scholar
  120. Watanabe, P.G., A.M. Schumann and R.H. Reitz, 1988. Toxicokinetics in the Evaluation of Toxicity Data. Regul. Toxicol. Pharmacol. 8: 408.PubMedCrossRefGoogle Scholar
  121. Whalen, C.L., and B.E. Kirstein, 1989. A Pharmacokinetic Model for Trichlorethylene. Report submitted to the U.S. Environmental Protection Agency under SAIC Contract #68–02–4402. Science Applications International, San Diego, California.Google Scholar
  122. White, L., Haines, H. and T. Adams, 1968. Cardiac Output Related to Body Weight in Small Mammals. Comp. Biochem. Physiol. 27: 559.CrossRefGoogle Scholar
  123. Whittemore, A.S., S.C. Grosser and A. Silvers, 1986. Pharmacokinetics in Low Dose Extrapolation using Animal Cancer Data. Fundam. Appl. Toxicol. 7: 183.PubMedCrossRefGoogle Scholar
  124. Withey, J.R., 1976. Quantitative Analysis of Styrene Monomer in Polystryene and Foods including some Preliminary Studies of the Uptake and Pharmacodynamies of the Monomer in Rats. Environ. Health Perspect. 17: 125.PubMedCrossRefGoogle Scholar
  125. Withey, J.R., 1990. Pharmacokinetics: Principles, Mechanisms and Methods. In: “Handbook of Vivo Toxicity Testing” ( D. L. Arnold, H. C. Grice and D. R. Krewski, ed.), page 303. Academic Press, New York.Google Scholar
  126. Withey, J.R. and P.G. Collins, 1977. Pharmacokinetics and Distribution of Styrene Monomer in Rats after Intravenous Adminstration. J. Toxicol. Environ. Health 3: 1011.PubMedCrossRefGoogle Scholar
  127. Yoshihara, S., K. Nagato, H. Yoshimura and Y. Masuda, 1981. Inductive Effect of Hepatic Enzymes and Acute Toxicity of Individual Polychlorinated Dibenzofuran Cogeners in Rats. Toxicol. Appl. Pharmacol. 59: 580.PubMedCrossRefGoogle Scholar
  128. Young, J.D., J.C. Ramsey, G.E. Blau, R.J. Karbowski, K.D. Nitschke, R.W. Slauter and W.H. Braun, 1979. Pharmacokinetics of Inhaled or Intraperitoneally Administered Styrene in Rats. In: “Toxicology and Occupational Medicine” ( W.B. Diechmann, ed.), page 287. Elsevier/North Holland, New York.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. Krewski
    • 1
  • J. R. Withey
    • 1
  • L. F. Ku
    • 1
  • C. C. Travis
    • 2
  1. 1.Health Protection BranchHealth & Welfare CanadaOttawaCanada
  2. 2.Office of Risk AnalysisOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations