Pharmacokinetic Strategies in the Development of Prodrugs

  • L. P. Balant
  • E. Doelker
  • P. Buri
Part of the NATO ASI Series book series (NSSA, volume 221)


The term prodrug was first introduced by Albert in 1958 to describe compounds which undergo biotransformation prior to exhibiting their pharmacological effects. Since then, many papers have been published on this subject [Higuchi & Stella, 1975; Roche, 1977; Higuchi et al, 1983; Stella et al, 1985; Waller & George, 1989; Balant et al, 1990a]. Usually, the use of the term prodrug implies a covalent link between an “active moiety” and a “carrier moiety”, but some authors also use this term to characterize some form of salts of the active principle. In this review, only covalently bound moieties will be considered.


Active Moiety Acetyl Ester Pivalic Acid Hydroxypropyl Cellulose Phosphoramide Mustard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert A., 1958. Chemical aspects of selective toxicity. Nature 182: 421.PubMedCrossRefGoogle Scholar
  2. Aguiar A., Zelmer J.E., 1969. Dissolution behavior of polymorphs of chloramphenicol palmitate and mefenamic acid. J. Pharm. Sci. 58: 983.PubMedCrossRefGoogle Scholar
  3. Aungst B.J., Myers M.J., Shefter E., Shami E.G., 1987. Prodrugs for improved oral nalbuphine bioavailability: Inter-species differences in the disposition of nalbuphine and its acetysalicylate and anthranilate esters. Int. J. Pharm. 38: 199.CrossRefGoogle Scholar
  4. Balant L.P., McAinsh J., 1980. Use of metabolite data in the evaluation of pharmacokinetics and drug action. In: “Concepts in Drug Metabolism” (P. Jenner and B. Testa, eds.), Part A, page 311. Marcel Dekker, New York.Google Scholar
  5. Balant L.P., Doelker E., Buri P., 1990a. Prodrugs for the improvement of drug absorbtion via different routes of administration. Europ. J. Drug Metab. Pharmacokin. 15: 143.CrossRefGoogle Scholar
  6. Balant L.P., Roseboom H., Gundert-Remy U.A., 1990b. Pharmacokinetic criteria for drug research and development. In: “Advances in Drug Research” ( B. Testa, ed.), Vol. 19, page 1. Academic Press Ltd, London.Google Scholar
  7. Balant-Gorgia A.E., Balant L.P., 1987. Antipsychotic drugs. Clinical pharmacokinetics of potential candidates for plasma concentration monitoring. Clin. Pharmacokin. 13: 65.CrossRefGoogle Scholar
  8. Basu K., Kildsig D.O., Mitra A.K., 1988. Synthesis and kinetic stability studies of progesterone derivatives. Int. J. Pharm. 47: 195.CrossRefGoogle Scholar
  9. Bodor N., Sloan K.B., Higuchi T., Sasahara K., 1977. Improved delivery through biological membranes. 4. Prodrugs of L-Dopa. J. Med. Chem. 20: 1435.PubMedCrossRefGoogle Scholar
  10. Bundgaard H., Nielsen N.M., 1988. Glycolamide esters as a novel biolabile prodrug type for non-steroidal anti-inflammatory carboxylic acid drugs. Int. J. Pharm. 43: 101.CrossRefGoogle Scholar
  11. Bundgaard H., Nielsen N.M., Buur A., 1988. Aspirin prodrugs:synthesis and hydrolysis of 2-acetoxybenzoate esters of various N-(hydroxyalkyl)amides. Int. J. Pharm. 44: 151.CrossRefGoogle Scholar
  12. Burger A., 1977. Neue Untersuchungergebnisse von Chloramphenicolpalmitat. Sci. Pharm. 45: 269.Google Scholar
  13. Buur A., Bundgaard H., 1986. Prodrugs of 5-fluorouracil. V. 1- Alkoxycarbonyl derivatives as potential prodrug forms for improved rectal or oral delivery of 5fluorouracil. J. Pharm. Sci. 75: 522.PubMedCrossRefGoogle Scholar
  14. Buur A., Bundgaard H., 1987. Prodrugs of 5-fluorouracil. VIII. Improved rectal and oral delivery of 5-fluorouracil via various prodrugs. Structure-rectal absorption relationships. Int. J. Pharm. 36: 41.CrossRefGoogle Scholar
  15. Buur A., Bundgaard H., 1988. Prodrugs of peptides. III. 5-Oxazolidinones as bioreversible derivatives for the a-amido carboxy moiety in peptides. Int. J. Pharm., 46: 159.CrossRefGoogle Scholar
  16. Chafi N., Montheard J.P., Vergnaud J.M., 1988. Dosage form with drug attached to polymer (polyanhydride) dispersed in a Eudragit matrix: Preparation and release of drug in gastric liquid. Int. J. Pharm. 45: 229.CrossRefGoogle Scholar
  17. Colvin M., Brundrett R.B., Kan M.N.N., et al., 1976. Alkylating properties of phosphoramide mustard. Cancer Res. 36: 1121.PubMedGoogle Scholar
  18. Dayer P., Desmeules J., Leemann T., Striberni R., 1988. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4- hydroxylation. Biochem. Biophys. Res. Commun. 152: 411.PubMedCrossRefGoogle Scholar
  19. Desmeules J, Dayer P., Gascon M.P., Magistris M., 1989. Impact of genetic and environmental factors on codeine analgesia. Clin. Pharmacol. 45: 122.Google Scholar
  20. Diasio R.B., Harris B.E., 1989. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokin. 16: 215.CrossRefGoogle Scholar
  21. Dobrinska M.R., Kukovetz W., Beubler E., et al., 1982. Pharrnacokinetics of the pivaloyloxyethyl (POE) ester of methyldopa, a new prodrug of methyldopa. J. Pharmacokin. Biopharm. 10: 587.CrossRefGoogle Scholar
  22. D’Souza M., Venkataramanan R., D’Mello A., Niphadkar P., 1986. An alternative prodrug approach for reducing presystemic metabolism of drugs. Int. J. Pharm. 31: 165.CrossRefGoogle Scholar
  23. Duggan D.E., Hare L.E., Ditzler C.A., et al., 1977. The disposition of sulindac in man. Clin. Pharmacol. Ther. 21: 326.PubMedGoogle Scholar
  24. Duggan D.E., Hooke K.F., Noll R.M., et al., 1978. Comparative disposition of sulindac and metabolites in five species. Biochem. Pharmacol. 27: 2311.PubMedCrossRefGoogle Scholar
  25. Ehrnebo M., Nilsson S.O., Boreus L.O., 1979. Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man. J. Pharmacokin. Biopharm. 7: 429.CrossRefGoogle Scholar
  26. Gibaldi M., Perrier D., 1982. “Pharmacokinetics.” Second Edition. Marcel Dekker, New York.Google Scholar
  27. Havron A., Weiner B.Z., Zilkha A., 1974. Polymeric salicylate derivatives. J. Med. Chem. 17: 770.PubMedCrossRefGoogle Scholar
  28. Higuchi T., Stella V., 1975. “Pro-drugs as Novel Drug Delivery Systems.” American Chemical Society, Washington DC.CrossRefGoogle Scholar
  29. Higuchi W.I., Kusai A., Fox J.L., et al., 1983. Controlled release of drugs: Prodrug performance in target tissues. In: “Controlled Release Delivery Systems” ( T.J. Roseman and S.Z. Mansdorf, eds.), page 43. Marcel Dekker, New York.Google Scholar
  30. Hrnblad Y., Ripe E., Magnusson P.O., Tegnes K., 1976. The metabolism and clinical activity of terbutaline and its prodrug ibuterol. Eur. J. Clin. Pharmacol. 10: 9.CrossRefGoogle Scholar
  31. Hussain M.A., Koval C.A., Myers M.J., et al., 1987. Improvement of the oral bioavailability of naltrexone in dogs: A prodrug approach. J. Pharm. Sci. 76: 356.PubMedCrossRefGoogle Scholar
  32. Hussain M.A., Shefter E., 1988. Naltrexone-3-salicylate (a proclrug of naltrexone): Synthesis and pharmacokinetics in dogs. Pharm. Res. 5: 113.PubMedCrossRefGoogle Scholar
  33. Inturrisi C.E., Mitchell B.M., Foley K.M., et al., 1984. The pharmacoldnetics of heroin in patients with chronic pain. New Engl. J. Med. 310: 1213.PubMedCrossRefGoogle Scholar
  34. Irwin W.J., Belaid K.A., 1988a. Drug-delivery by ion-exchange. Hydrolysis and rearrangement of ester pro-drugs of propranolol. Int. J. Pharm. 46: 57.CrossRefGoogle Scholar
  35. Irwin W.J., Belaid K.A., 1988b. Drug-delivery by ion-exchange. Stability of ester prodrugs of propranolol in surfactant and enzymatic systems. Int. J. Pharm. 48: 159.CrossRefGoogle Scholar
  36. Johansen M., Bundgaard H., 1981. Decomposition of rotitetracycline and other N-Mannich bases and of N-hydroxy-methyl derivatives in the presence of plasma. Arch. Pharm. Chem. Sci. 9: 40.Google Scholar
  37. Kaneo Y., Tanaka T., Fujihara Y., et al., 1988. Delivery of glutathione, as a dextran conjugate, into the liver. Int. J. Pharm. 44: 265.CrossRefGoogle Scholar
  38. Kojima T., Hashida M., Muranishi S., Sezalci H., 1978. Antitumor activity of timed-release derivative of mitomycin C, agarose bead conjugate. Chem. Pharrn. Bull. 26: 1818.CrossRefGoogle Scholar
  39. Kratzl K., Kaufmann E., 1961. Versuche zur Darstellung hochmolekularer Pharmazeutika. 1. Mitt.: Synthese, Reaktionen und 14C-Markierung eines AcetylsalicylsäurestArkeesters. Monatschr. Chem. 92: 371.CrossRefGoogle Scholar
  40. Kratzl K., Kaufmann E., Kraupp O., Stormann H., 1961. Versuche zur Darstellung hochmolekularer Pharmazeutika. 2. Mitt.: Stoffwechseluntersuchungen von Acetylsalicylsaurestärkeestern. Monatschr. Chem. 92: 378.Google Scholar
  41. Larsen C., 1989. Macromolecular prodrug. XII. Kinetics of release of naproxen from various polysaccharide ester prodrugs in neutral and alkaline solution. Int. J. Pharm. 51: 223.Google Scholar
  42. Leight D.A., Reeves D.S., Simmons K., et al., 1976. Talampicillin, a new derivative of ampicillin. Brit. Med. J., 1: 1378.CrossRefGoogle Scholar
  43. Meslard J.C., Yean L., Subira F., Vairon J.P., 1986. Reversible immobilization of drugs on a hydrogen matrix. Makromol. Chem. 187: 787.CrossRefGoogle Scholar
  44. Negishi N., Bennett D.B., Cho C.S., et al., 1987. Coupling of natrexone to biodegradable poly(a-amino acids). Pharm. Res. 4: 305.PubMedCrossRefGoogle Scholar
  45. Olsson O.A.T., Svensson L.A., 1984. New lipophilic terbutaline ester prodrugs with long effect duration. Pharm. Res. 1: 19.CrossRefGoogle Scholar
  46. Pardridge W.M., 1983. Brain metabolism: a perspective from the blood-brain barrier. Physiol. Rev. 63: 1481.PubMedGoogle Scholar
  47. Puglisi L., Caruso V., Paoletti R., et al., 1976. Macromolecular drugs. I: Long-lasting antilipolytic activtiy of nicotinic acid bound to a polymer. Phartnacol. Res. Commun. 8: 379.CrossRefGoogle Scholar
  48. Remon JP., Duncan R., Schacht E., 1984. Polymer-drug combinations: Pinocytic uptake of modified polysaccharides containing procainamide moieties by rat visceral yolk sacs cultured in vitro. J. Control. Rel. 1: 47.CrossRefGoogle Scholar
  49. Ringsdorf H., 1975. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 51: 135.CrossRefGoogle Scholar
  50. Roche E.B., 1977. “Design of Biopharmaceutical Properties through Prodrugs and Analogs.” American Pharmaceutical Association/ Academy of Pharmaceutical Sciences, Washington DC.Google Scholar
  51. Rowland M., Tozer T.N., 1989. “Clinical Pharmacokinetics.” Second Edition. Lea & Febiger, Philadelphia.Google Scholar
  52. Rozencweig M., Staquet M., Klastersky J., 1976. Antibacterial activity and pharmacokinetics of bacampicillin and ampicillin. Clin. Pharmacol. Ther. 19: 592.PubMedGoogle Scholar
  53. Saab A.N., Ditter L.W., Hussain A.A., 1988. Isomerization of cephalosporin esters: Implications for the prodrug ester approach to enhancing the oral bioavailability of cephalosporins. J. Pharm. Sci. 77: 906.PubMedCrossRefGoogle Scholar
  54. Sasaki H., Takahashi T., Nakamura J., et al., 1986. Intestinal absorption of 5fluorouracil and its alkylcarbamoyl derivatives in the rat small intestine. J. Pharm. Sci. 75: 676.PubMedCrossRefGoogle Scholar
  55. Schaaf L.J., Dobbs B.R., Edwards I.R., Perrier D.G., 1988. The pharmacokinetics of doxifluridine and 5-fluorouracil after single intravenous infusions of doxifluridine to patients with colorectal cancer. Eur. J. Clin. Pharmacol. 34: 439.PubMedCrossRefGoogle Scholar
  56. Schacht E., Ruys E., Vermeersch J., Remon J.P., 1984. Polymer-drug combinations: Synthesis and characterization of modified polysaccharides containing procainamide moieties. J. Control. Rel. 1: 33.CrossRefGoogle Scholar
  57. Singh M., Vasudevan P., Sinha T.J.M., et al., 1981. An insulin delivery system from oxidized cellulose. J. Biomed. Mater. Res. 15: 655.PubMedCrossRefGoogle Scholar
  58. Sinkula A.A., 1977. Perspective on prodrugs and analogs in drug design. In “Design of Biopharmaceutical Properties through Prodrugs and Analogs” ( E.B. Roche ed.), page 1. American Pharmaceutical Association/ Academy of Pharmaceutical Sciences, Washington DC.Google Scholar
  59. Sinkula A.A., Yalkowsky S.H., 1975. Rationale for design of biologically reversible drug derivatives: Prodrugs. J. Pharm. Sci. 64: 181.PubMedCrossRefGoogle Scholar
  60. Sloan K.B., Bodor N., 1982. Hydroxymethyl and acycloxymethyl prodrugs of theophylline: Enhanced delivery of polar drugs through skin. Int. J. Pharm. 12: 299.CrossRefGoogle Scholar
  61. Stella V.J., Charman W.N.A., Naringrekar V.H., 1985. Prodrugs: Do they have advantages in clinical practice? Drugs 29: 445.CrossRefGoogle Scholar
  62. Strong H.A., Warner N.J., Renwick A.G., George C.F., 1985. Sulindac metabolism: The importance of an intact colon. Clin. Pharmacol. Ther. 38: 387.PubMedCrossRefGoogle Scholar
  63. Tatsumi K., Kitimura S. Yanada S., 1983. Sulfoxide reductase activity of liver aldehyde oxidase. Biochem. Biophys. Acta 747: 86.PubMedCrossRefGoogle Scholar
  64. Tritton T.R., Yee G., Wingaard L.B., 1983. Immobilized adriamycin: A tool for separating cell surface from intracellular mechanisms. Fed. Proc. 42: 284.PubMedGoogle Scholar
  65. Vert M., 1986. “Polyvalent polymeric drug carriers.” Critical Reviews in Theapeutic Drug Carrier Systems, Vol. 2. CRC Press, Boca Raton, FL.Google Scholar
  66. Vickers S., Duncan C.A., White S.D., et al., 1978. Evaluation of succinimidoethyl and pivaloyloxyethyl esters as progenitors of methyldopa in man, rhesus monkey, dog and rat. Drug Metab. Dispos. 6: 646.Google Scholar
  67. Vickers S., Duncan C.A.H., Ramjit H.G., et al., 1984. Metabolism of methyldopa in man after oral administration of the pivaloyloxyethyl ester. Drug Metab. Dispos. 12: 242.PubMedGoogle Scholar
  68. Wagner J., Grill H., Henschler D., 1980. Prodrugs of etilefrine: Synthesis and evaluation of 3’-(0-acyl) derivatives. J. Pharm. Sci. 69: 1423.PubMedCrossRefGoogle Scholar
  69. Waller D.G., George C.F., 1989. Prodrugs. Brit. J. Clin. Pharmacol. 28: 497.Google Scholar
  70. Yolles S., 1987. Time-release depot for anticancer drugs:Release of drugs covalently bonded to polymers. J. Parenter. Drug Assoc. 32: 188.Google Scholar
  71. Yolles S., Morton J.F., Sartori M.F., 1979. Preparation of steroid esters of hydroxypropyl cellulose. J. Polym. Sci. Polym. Chem. Ed. 17:4111.CrossRefGoogle Scholar
  72. Yoshimura Y., Hamaguchi N., Yashiki T., 1987. Synthesis and oral absorption of acyloxymethyl esters of cefotiam. Int. J. Pharm. 38: 179.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • L. P. Balant
    • 1
    • 2
  • E. Doelker
    • 2
  • P. Buri
    • 2
  1. 1.Clinical Research and Clinimetrics UnitPsychiatric University Institutions of GenevaSwitzerland
  2. 2.School of PharmacyUniversity of GenevaSwitzerland

Personalised recommendations