Advertisement

Interspecies Scaling in Pharmacokinetics

  • Kannan Krishnan
  • Melvin E. Andersen
Part of the NATO ASI Series book series (NSSA, volume 221)

Abstract

Scaling is the process of utilizing structural and functional features of one system as a basis to predict those of another. “Interspecies scaling in pharmacokinetics” signifies the prediction of in vivo chemical disposition behavior in untested species from the experimental observations made in one or more species. Interspecies scaling of the pharmacokinetic processes (i.e., uptake, distribution and clearance) of chemicals can be performed by (1) allometry and (2) physiological modeling. Whereas the allometric approach involves estimation of the pharmacokinetic parameters — clearance, half-life, volume of distribution etc. — in untested species based on their relationship to body mass in several test animal species, physiological modeling involves computer simulation of pharmacokinetics first, in one species, and then extrapolation to other species by scaling the appropriate critical biological determinants of disposition (e.g., blood flow rates, tissue volumes, rates of metabolism).

Keywords

Blood Flow Rate Allometric Equation Intrinsic Clearance Physiological Modeling Pharmacokinetic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, E. F., 1949. Quantitative relations in the physiological constitutions of mammals. Nature 109: 579.Google Scholar
  2. Andersen, M.E. Clewell, H.J.III., Gargas, M.L., Smith, F.A. and Reitz, R.H., 1987. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol. Appl. Pharmacol. 87: 185.PubMedCrossRefGoogle Scholar
  3. Boxenbaum, H., 1980. Interspecies variation in liver weight, blood flow and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin. J Pharmacokin Biopharm 8: 165.CrossRefGoogle Scholar
  4. Boxenbaum, H., 1982. Interspecies scaling, allometry, physiological time, and the ground plan for pharmacokinetics. J. Pharmacokinet. Biopharm. 10: 201.PubMedCrossRefGoogle Scholar
  5. Boxenbaum, H., 1984. Interspecies pharmacokinetic scaling and the evolutionary-comparitive paradigm. Drug Metab. Rev. 15: 1071.Google Scholar
  6. Boxenbaum, H. and D Souza, R., 1987. Physiological models, allometry, neoteny, space-time and pharmacokinetics. In: Pharmacokinetics: Mathematical and statistical approaches to metabolism and distribution of chemical and drugs ( A. Pecile and A. Rescigno, editors), page 191. Plenum Press, New York.Google Scholar
  7. Boxenbaum, H. and Ronfield, R., 1983. Interspecies pharmacokinetic scaling and the Dedrick plots. Am. J. Physiol. 245: R768.PubMedGoogle Scholar
  8. Campbell, D.B. and Ings R.M.J., 1988. New approaches to the use of pharmacokinetics in toxicology and drug development. Human Toxicol. 7: 469.CrossRefGoogle Scholar
  9. Dedrick, R.L., Bischoff, K.B. and Zaharko, D.Z., 1970. Interspecies correlation of plasma concentration history of methotrexate (NS C-740). Cancer Chemother. Rep. (Part 1 ) 54: 95.Google Scholar
  10. Fisher, J•W., Whittaker, T.A., Taylor, D.H., Clewell, JH.J.III. and Andersen, M.E., 1990. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and trichloroacetic acid. Toxicol. Appl. Pharmacol. 99: 395.CrossRefGoogle Scholar
  11. Gehring, P.J., Watanabe, P.G. and Blau, G.E., 1976. Pharmacokinetic studies in evaluation of the toxicological and environmental hazard of chemicals. In: New concepts in safety evaluation ( M.A. Mehlman, R.E. Shapiro and H. Blumenthal, eds.), page 193. Hemisphere, New York.Google Scholar
  12. Gould, S.J., 1977. Neoteny and phylogeny. The Belknap press of Harvard University Press, Cambridge, MA.Google Scholar
  13. Hall, S. and Rowland, M., 1983. Relationship between renal clearance, protein binding, and urine flow for digitoxin, a compound of low clearance in isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 227: 174.Google Scholar
  14. Holt, J.P. and Rhode E.A., 1976. Similarity of renal glomerular hemodynamics in mammals. Am. Heart J. 92: 465.PubMedCrossRefGoogle Scholar
  15. Ings, R.M.J., 1990. Interspecies scaling and comparisons in drug development and toxicokinetics. Xenobiotica 20: 1201.PubMedCrossRefGoogle Scholar
  16. Kleiber, M., 1947. Metabolic turnover rate: a physiological meaning of the metabolic rate per unit body weight. J. Theor. Biol. 53: 199.CrossRefGoogle Scholar
  17. Krishnan, K. and Andersen, M.E., 1991. Pharmacokinetics, individual differences. In: Handbook of Hazardous Materials (M.Corn, ed.). Academic Press, New York (in press).Google Scholar
  18. Krishnan, K., Gargas, M.L., Fennell, T.R. and Andersen, M.E., 1991. A physiologically based description of ethylene oxide dosimetry in the rat. Toxicologist 11: 33.Google Scholar
  19. Leung, H.W., Paustenbach, D.J., Murray, F.J. and Andersen, M.E., 1990. A physiologically based pharmacokinetic description and enzyme inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol. Appl. Pharmacol. 103: 399.PubMedCrossRefGoogle Scholar
  20. Levy, G., 1968. Dose dependent effects in pharmacokinetics. In: Importance of fundamental principles in drug evaluation ( D.H. Tedeschi and R.E. Tedeschi, eds.), page 141. Raven, New York.Google Scholar
  21. Levy, G., 1980. Effect of plasma protein binding on renal clearance of drugs. J. Pharmaceut. Sci. 69: 482.CrossRefGoogle Scholar
  22. McDougal, J.N., Jepson, G.W., Clewell, H.J.III., McNaughton, M.G. and Andersen, M.E., 1986. A physiological pharmacokinetic model for dermal absorption of vapors in the rat. Toxicol. Appl. Pharmacol. 85: 286.PubMedCrossRefGoogle Scholar
  23. Medinsky, M., 1990. Critical determinants in the systemic availability and dosimetry of volatile organic chemicals. In: Principles of route-to-route extrapolation for risk assessment (T. R. Gerrity and C.J. Henry, eds.). Elsevier, New York (in press).Google Scholar
  24. Mordenti, J., 1986. Man versus beast: Pharmacokinetic scaling in mammals. J. Pharmaceut. Sci. 75: 1028.CrossRefGoogle Scholar
  25. Mordenti, J. and Chappell, W., 1989. The use of interspecies scaling in toxicoldnetics. In: Toxicokinetics and new drug development ( A. Yacobi, JP Skelly and VK Batra, eds.), page 42. Pergamon Press, New York.Google Scholar
  26. National Research Council, 1986. Drinking water and health, volume 6. NAS, Washington, D.C.Google Scholar
  27. Ramsey, J.C. and Andersen, M.E., 1984. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmacol. 73: 159.PubMedCrossRefGoogle Scholar
  28. Reitz, R.H., Mendrela, A.L., Park, C.N., Andersen, M.E. and Guengerich, F.P., 1988. Incorporation of in vitro enzyme data into physiologically based pharmacokinetic model for methylene chloride: implications for risk assessment. Toxicol. Lett. 43: 97.PubMedCrossRefGoogle Scholar
  29. Rowland, M., 1986. Physiological pharmacokinetic models and interanimal species scaling. Pharmacol. Ther. 29: 49.CrossRefGoogle Scholar
  30. Sacher, G.A., 1959. Relationship of lifespan to brain weight and body weight in mammals. Ciba Foundation Colloquim on Aging 5: 115.Google Scholar
  31. Stahl, W.R., 1963. The analysis of biological similarity. Adv. Biol. Med. Phys. 9: 355.PubMedGoogle Scholar
  32. Tangliu, D.D., Tozer, T.N. and Riegelman, S., 1983. Dependence of renal clearance on urine flow: a mathematical model and its application. J. Pharmaceut. Sci. 72: 154.CrossRefGoogle Scholar
  33. van Ginneken, C.A.M. and Russel, F.G.M., 1989. Saturable phannacokinetics in the renal excretion of drugs. Clin. Pharmacokinet. 16: 38.PubMedCrossRefGoogle Scholar
  34. Wesson, L.G., 1954. A theoretical analysis of urea excretion by the mammalian lcidney. Am. J. Physiol. 179: 364.PubMedGoogle Scholar
  35. Wilkinson, G.R. and Shand, D.G., 1975. A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18: 377.PubMedGoogle Scholar
  36. Yates, E. and Kugler, P.N., 1986. Similarity principles and intrinsic geometries: contrasting approaches to interspecies scaling. J. Pharmaceut. Sci. 75: 1019.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kannan Krishnan
    • 1
  • Melvin E. Andersen
    • 1
  1. 1.Chemical Industry Institute of ToxicologyResearch Triangle ParkUSA

Personalised recommendations