Contribution of Positron Emission Tomography to Pharmacokinetic Studies

  • B. Mazière
  • M. Mazière
  • J. Delforge
  • A. Syrota
Part of the NATO ASI Series book series (NSSA, volume 221)


Positron Emission Tomography (PET) is a safe non-invasive visualization technique that provides serial quantitative images of the spatial distribution of a previously administered molecule labelled with a positron emitting radionuclide, in any desired transverse section of the body. By allowing in vivo non-invasive sequential measurements of regional drug concentrations, with sensitivity and specificity equivalent to those of plasma radioimmuno assays (RIA) (nanomolar to picomolar differences can be detected), PET provides an opportunity to follow the kinetics of drugs in humans, in various tissus.


Positron Emission Tomography Positron Emission Tomography Image Positron Emission Tomography Study Receptor Occupancy Positron Emission Tomography Data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baron J-C., Roeda D., Crouzel C. et al., 1983. Brain regional pharmacodynamics of 11C-labeled diphenylhydantoin: Positron emission tomography in humans. Neurology 33: 580.PubMedGoogle Scholar
  2. Blin, J., Pappata, S., Kiyosawa et al., 1988. (18F)Setoperone: a new high affinity ligand for positron emission tomography study of the serotonin-2 receptors in baboon brain in vivo. Eur. J. Pharmacol. 147: 73.PubMedCrossRefGoogle Scholar
  3. Blin J., Sette G., Fiorelli M. et al., 1990. A method for the in vivo investigation of the serotoninergic S2 receptors in the human cerebral cortex using Positron Emission Tomography and 18F-labeled Setoperone. J. Neurochem. 54: 1744.PubMedCrossRefGoogle Scholar
  4. Blomqvist G., Pauli S., Farde L. et al., 1990. Maps of receptor binding parameters in the humain brain — A kinetic analysis of PET measurements. Eur. J. Nucl. Med. 16: 257.PubMedCrossRefGoogle Scholar
  5. Brouillet E., Chavoix C., Hantraye P. et al., 1990. Interaction of suriclone with central type benzodiazepine receptors in living baboons. Eur. J. Pharmacol. 175: 49.PubMedCrossRefGoogle Scholar
  6. Charbonneau P., Syrota A., Crouzel C. et al., 1986. Peripheral-type benzodiazepine receptors in the living heart characterized by positron emission tomography. Circulation 73: 476.PubMedCrossRefGoogle Scholar
  7. Cambon H., Baron J-C., Boulenger J-P. et al., 1987. In vivo assays for neuroleptic receptor binding in the striatum. Positron Emission Tomography in humans. Brit. J. Psychiatry 151: 824.CrossRefGoogle Scholar
  8. Comm, D., Zarifian E., Verhas M. et al., 1979. Brain distribution and kinetics of 11C-chlorpromazine in schizophrenics: Positron emission tomography studies. Psychiatry Research 1:23.CrossRefGoogle Scholar
  9. Comar D., Berridge M., Mazière B. et al., 1982. Radiopharmaceuticals labelled with positron-emitting radioisotopes. In: “Computed Emission Tomography” ( Ell P.J., Holman B L., eds), page 42. Oxford University Press, Oxford, U.K.Google Scholar
  10. Crawley J.C., Smith T., Veall N. et al., 1985. Distribution, retention and radiation dosimetry of 77Br-p-Bromospiperone. Radiat. Protect. Dosimetry 8: 147.Google Scholar
  11. Crouzel C., Mestelan G., Kraus E. et al., 1980. Synthesis of a 11C-labelled neuroleptic drug: pimozide. Int. J. Appl. Radiat. Isot. 31: 545.PubMedCrossRefGoogle Scholar
  12. Dannals R.F., Lângström B., Frost J.J. et al., 1988. Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: (11C)dexetimide and (11C)levetimide. Appl. Radiat Isot. 39: 291.CrossRefGoogle Scholar
  13. Delforge J., Syrota A., Mazoyer B.M., 1990a. Identifiability analysis and parameter identification of an in-vivo receptor model for PET data. IEEE Biomed. Engineer. 37: 653.CrossRefGoogle Scholar
  14. Delforge J., Janier M., Syrota A. et al., 1990b. Non-invasive quantification of muscarinic receptors in vivo with Positron Emission Tomography in the dog heart. Circulation 82: 1494.PubMedCrossRefGoogle Scholar
  15. Dewey S.L., Macgregor R.R., Brodie J.D. et al., 1990. Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse 5: 213.PubMedCrossRefGoogle Scholar
  16. Farde L., Hall H., Ehrin E. et al., 1986. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231: 258.PubMedCrossRefGoogle Scholar
  17. Farde L., Pauli S., Hall H. et al., 1988. Stereoselective binding of 11C-raclopride in the living human brain — A search for extrastriatal central D2 dopamine receptors by PET. Psychopharmacology 94: 471.PubMedCrossRefGoogle Scholar
  18. Farde L., Eriksson L., Blomquist G. et al., 1989. Kinetic analysis of 11C-raclopride binding to D2 dopamine receptors studied by PET — A comparison to equilibrium analysis. J. Cereb. Blood Flow Metab. 9: 696.PubMedCrossRefGoogle Scholar
  19. Frey K.A., Koeppe R.A., Mulholland G.K. et al., 1988. Muscarinic receptor imaging in human brain using (11C)scopolamine and Positron Emission Tomography. J. Nucl. Med. 29: 808.Google Scholar
  20. Fowler J.S., MacGregor R.R., Wolf A.P. et al., 1987. Mapping human brain monoamine oxydase A and B with 11C-labelled suicide inactivators and PET. Science 235: 481.PubMedCrossRefGoogle Scholar
  21. Frost J.J., Wagner H.N., Dannals R.F. et al., 1986. Imaging benzodiazepine receptors in man with (11C)suriclone by Positron Emission Tomography. Eur. J. Pharmacol. 122: 381.PubMedCrossRefGoogle Scholar
  22. Frost J.J., Mayberg H.S., Douglas K.H. et al., 1987. Alteration of cerebral mu-opiate receptors in the temporal lobe epilepsy and following electroconvulsive therapy. J. Cereb. Blood Flow Metab. 7 (suppl.1): 421.Google Scholar
  23. Hantraye Ph., Kaijima M., Prenant C. et al., 1984. Central type benzodiazepine binding sites: A Positron Emission Tomography study in the baboon’s brain. Neurosci. Lett. 48: 115.PubMedCrossRefGoogle Scholar
  24. Hantraye P., Chavoix C., Guibert B. et al., 1987. Benzodiazepine receptors studied in living primates by positron emission tomography: antagonist interactions. Eur. J. Pharmacol. 138: 239.PubMedCrossRefGoogle Scholar
  25. Harvey J., Firnau G., Garnett E.S., 1985. Estimation of the Radiation Dose in Man due to 6-[18F]Fluoro-L-dopa. J. Nucl. Med. 26: 931.PubMedGoogle Scholar
  26. Herzog H., Coenen H.H., Kuwert T. et al., 1990. Quantification of the whole-body distribution of PET radiopharmaceuticals, applied to 3-N-([18F]fluoroethyl)spiperone. Eur. J. Nucl. Med. 16: 77.PubMedCrossRefGoogle Scholar
  27. Huang S-C., Barrio J.R., Phelps M.E., 1986. Neuroreceptor assay with Positron emission tomography: equilibrium versus dynamic approaches. J. Cereb. Blood Flow Metab. 6: 515.PubMedCrossRefGoogle Scholar
  28. Huang S-C, Bahn M.M., Banjo J.R., et al., 1989. A double-injection technique for in vivo measurement of dopamine D2-receptor density in monkeys with 3-(21(18F)fluoroethypspiperone and dynamic positron emission tomography. J. Cereb. Blood Flow Metab. 9: 850.PubMedCrossRefGoogle Scholar
  29. Jones A.K.P., Luthra S.K., Mazière B. et al., 1988. Regional cerebral opioid receptor studies with (11C)diprenorphine in normal volunteers. J. Neurosci. Meth. 23: 121.CrossRefGoogle Scholar
  30. Kilbourn M.R., Carey J.E., Koeppe R.A. et al., 1989. Biodistribution, dosimetry, metabolism and monlcey PET studies of 18F-GBR 13119. Imaging the dopamine uptake system in vivo. Nucl. Med. Biol. 6: 569.Google Scholar
  31. Lee M.C., Wagner H.N., Tana & S. et al., 1988. Duration of occupancy of opiate receptors by Naltrexone. J. Nucl. Med. 29: 1207.PubMedGoogle Scholar
  32. Mathias C.J., Welch M.J., Katznellenbogen J.A. et al., 1987. Characterization of the uptake of 16a-([18F]fluoro)-17-estradiol in DEMBA-induced mammary tumors. Nucl. Med. Biol. 14: 15.Google Scholar
  33. Mazière B., Loc’h C., Hantraye P. et al., 1984. 76Br-Bromospiroperidol: A new tool for quantitative in-vivo imaging of neuroleptic receptors. Life Sci. 35: 1349.PubMedCrossRefGoogle Scholar
  34. Mazière B., Loc’h C., Baron J-C. et al., 1985. In vivo imaging of dopamine receptors in human brain using Positron Emission Tomography and 76Br-Bromospiperone. Eur. J. Pharmacol 114: 267.PubMedCrossRefGoogle Scholar
  35. Mazière B., Loc’h C., Stulzaft O. et al., 1986. 76Br-Bromolisuride: A new tool for quantitative in vivo imaging of D2 dopamine receptors. Eur. J. Pharmacol. 127: 239.PubMedCrossRefGoogle Scholar
  36. Mazière B., Mazière M., 1991. Positron Emission Tomography studies of brain receptors. Fundam. Clin. Pharmacol. 5: 61.PubMedCrossRefGoogle Scholar
  37. Mazière M., Todd-Pokropek A.E., Berger G. et al., 1977. Carbon-11 labelled compounds in dynamic imaging studies of the brain. In: “Medical Radionuclide Imaging”, vol.II, page 203. SM 210 /155, A.I.E.A., Vienna.Google Scholar
  38. Mazière M., Prenant C., Sastre J. et al., 1983. Etude “in vivo” des récepteurs aux benzodiazépines par tomographie d’émission de positons. L’encéphale IX: 151b.Google Scholar
  39. Mazière M., Hantraye P., Kaijima M. et al., 1985. Visualization by positron emission tomography of the apparent regional heterogeneity of central type benzodiazepine receptors in the brain of living baboons. Life Sci. 36: 1609.PubMedCrossRefGoogle Scholar
  40. Meltzer C., Bryan R., Holcomb H. et al., 1990. Anatomical Localization for PET using MR imaging. J. Comput. Assist. Tomog. 14: 418.CrossRefGoogle Scholar
  41. Mintun M.A., Raichle M.E., Kilbourn M.R. et al., 1984. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol. 15: 217.PubMedCrossRefGoogle Scholar
  42. Pappata S., Samson Y., Chavoix C. et al., 1988. Regional specific binding of [11CWO 15 1788 to central type benzodiazepine receptors in human brain: Quantitative evaluation by PET. J. Cereb. Blood Flow Metab. 8: 304.PubMedCrossRefGoogle Scholar
  43. Patlak C.S., Blasberg R.G., Fensternmacher J.D., 1983. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3: 1.PubMedCrossRefGoogle Scholar
  44. Patlak C.S., Blasberg R.G., 1985. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow 5: 584.CrossRefGoogle Scholar
  45. Perlmutter J., Larson K.B., Raichle M.E. et al., 1986. Strategies for in vivo measurement of receptor binding using positron emission tomomgraphy. J. Cereb. Blood Flow Metab. 6: 154.PubMedCrossRefGoogle Scholar
  46. Persson A., Ehrin E., Eriksson L. et al., 1985. Imaging of 11C-labelled Ro 15 188 binding to benzodiazepine receptors in the human brain by positron emission tomography. J. Psychiatr. Res. 19: 609.PubMedCrossRefGoogle Scholar
  47. Pert C.B., Danks J.A. Channing M.A. et al., 1984. 3-[18F]Acetylcyclofoxy: A useful probe for the visualization of opiate receptors in living animals. FEBS Letters 177: 281.PubMedCrossRefGoogle Scholar
  48. Samson Y., Hantraye P., Baron J-C. et al., 1985. Kinetics and displacement of (11C)R0 15 1788, a benzodiazepine antagonist, studied in vivo in human brain by positron tomography. Eur. J. Pharmacol. 110: 247.PubMedCrossRefGoogle Scholar
  49. Syrota A., Paillotin G., Davy J.M. et al., 1984. Kinetics of in vivo binding of antagonist to muscarinic cholinergic receptor in the human heart studied by positron emission tomography. Life Sci. 35: 937.PubMedCrossRefGoogle Scholar
  50. Syrota A., 1989. In vivo investigation of myocardial perfusion, metabolism and receptors by positron emission tomography. Int. J. Microcirc: Clin. Exp. 8: 411.Google Scholar
  51. Tyler J.L., Yamamoto Y.L., Diksic M. et al., 1986. Pharmacokinetics of superselective infra-arterial and intravenous [11C]BCNU evaluated by PET. J. Nucl. Med. 27: 775.PubMedGoogle Scholar
  52. Wagner H.N., Burns H.D., Dannals R.F. et al., 1983. Imaging dopamine receptors in the humain brain by positron emission tomography. Science 221: 1264.PubMedCrossRefGoogle Scholar
  53. Wollmer P., Pride N.B., Rhodes C. et al., 1982. Measurement of pulmonary erythromycin, concentration in patients with lobar pneumonia by means of positron tomography. Lancet 1361.Google Scholar
  54. Wong D.F., Gjedde A., Wagner H.N. Jr., 1986a. Quantification of neuroreceptors in living human brain. I. Irreversible binding of ligands. J. Cereb. Blood Flow Metab. 6: 137.PubMedCrossRefGoogle Scholar
  55. Wong D.F., Gjedde A., Wagner H.N. Jr. et al., 1986b. Quantification of neuroreceptors in living human brain. II. Inhibition studies of receptor density and affinity. J. Cereb. Blood Flow Metab. 6: 147.PubMedCrossRefGoogle Scholar
  56. Wong D.F., Lever J.R., Hartig P.R. et al., 1987. Localization of serotonin 5-HT2 receptors in living human brain by positron emission tomography using N1(11C-methyl)-2-Br-LSD. Synapse 1: 393.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • B. Mazière
    • 1
  • M. Mazière
    • 1
  • J. Delforge
    • 1
  • A. Syrota
    • 1
  1. 1.Service Hospitalier Frédéric JoliotCEAOrsayFrance

Personalised recommendations