Advertisement

ADP-Ribosylation: Approach to Molecular Basis of Aging

  • Paul Mandel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 296)

Abstract

About 25 years ago we observed1 that a liver nuclear extract is able to produce from NAD a polyadenosine polymer. Chemical and enzymatic degradation followed by methylatioh experiments lead us to conclude that the polymer synthesized was polyadenosine diphosphate ribose (polyADPR) (Fig. 1). We called the enzyme present in the nuclear extract polyADP-ribose polymerase (polyADP-R)P. The enzymatic activity was expressed only in the presence of DNA. The structure of the polymer was confirmed one year later by Nishizuka et al.2 and by Sugimura et al.3. We have also demonstrated the activity of the polymerase in vivo.4 A fundamental step in our understanding of the biological role of this enzyme was the demonstration of its capacity to produce a transfer of polyADPR to nuclear proteins and thus a post-translational modification similar to that already well established: phosphorylation, methylation and acetylation 5,6. Later oligo and mono ADPR transferases (ADPRT) were discovered in cytoplasm, in mitochondria7,8,9,10 in erythrocyte supernatant and in the plasma membrane12 as well as in ribonucleoprotein particles carrying messenger RNA13 (mRNP) (see also for review14,15,l6,17,l8). Procedures for the purification of the nuclear (polyADP-R)P from bovine thymus were developed in our laboratory19 and in others (see for review14), providing an enzyme clearly DNA-dependent.

Keywords

Lens Epithelial Cell Bovine Lens Diphosphate Ribose Adenosine Diphosphate Ribose Glycohydrolase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Chambon, J.D. Weill, J. Doly, M.T. Strosser and P. Mandel, On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei, Biochem. Biophys. Res. Commun. 25:638–643 (1966).CrossRefGoogle Scholar
  2. 2.
    Nishizuka Y., K. Ueda, K. Nakazawa and O. Hayaishi, Studies on the polymer of adenosine diphosphate ribose, J. Biol. Chem. 242:3164–3171 (1967).PubMedGoogle Scholar
  3. 3.
    T. Sugimura, S. Fujimara, S. Hasegawa and Y. Kawamura, Polymerisation of the adenosine 5′ -diphosphate ribose moiety of NAD by rat liver nuclear enzyme, Biochem. Biophys. Acata 138:438–441 (1967).Google Scholar
  4. 4.
    J. Doly and P. Mandel, Mise en évidence de la biosynthèse in vivo d’un polymère composé, le polyadénosine diphosphoribose dans les noyaux de foie de poulet, C.R. Acad. Sci. 264:2687–2690 (1967).Google Scholar
  5. 5.
    Y. Nishizuka, K. Ueda, T. Honjo, O. Hayaishi, Enzymic adenosine diphosphate ribosylation of histone and poly adenosine diphosphate ribose synthesis in rat liver, J. Biol. Chem. 243:3765–3767 (1968).PubMedGoogle Scholar
  6. 6.
    H. Otake, M. Miwa, S. Fujimara and T. Sugimura, Binding of ADP-ribose polymer with histone, J. Biochem. 65:145–146 (1969).PubMedGoogle Scholar
  7. 7.
    E. Kun, E. Kirsten, Mitochondrial ADP-ribosyltransferase system, in: “ADP-ribosylation reactions”, O. Hayaishi and K. Ueda, ed., Academic Press, New York (1982).Google Scholar
  8. 8.
    L.O. Burzio, L. Saez and R. Cornejo, Poly(ADP-ribose) synthetase activity in rat testis mitochondria, Biophys. Res. Commun. 103:369–375 (1981).CrossRefGoogle Scholar
  9. 9.
    A. Masmoudi and P. Mandel, ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria, Biochemistry 26:1965–1969 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Masmoudi, F. Islam and P. Mandel, ADP-ribosylation of highly purified rat brain mitochondria, J. Neurochem. 51:188–193 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Moss and M. Vaughan, Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase, Proc. Natl. Acad. Sci. USA 75:3621–3624 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Adamietz, K. Wielckens, R. Bredehorst, H. Lenyel and H. Hilz, Subcellular distribution of mono(ADP-ribose) protein conjugates in rat liver, Biochem. Biophys. Res. Commun. 101:96–103 (198l).CrossRefGoogle Scholar
  13. 13.
    R. Elkaim, H. Thomassin, C. Niedergang, J.M. Egly, J. Kempf and P. Mandel, Adenosine diphosphate ribosyltransferase and protein acceptors associated with cytoplasmic free messenger ribonucleo-protein particles, Biochimie, 65:653–659 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    O. Hayaishi and K. Ueda, “ADP-ribosylation reactions”, Academic Press, New York (1982).Google Scholar
  15. 15.
    M.K. Jacobson and E.L. Jacobson, “ADP-ribose transfer reactions”, Springer-Verlag, New York Berlin Heidelberg (1989).CrossRefGoogle Scholar
  16. 16.
    H. Hilz, K. Wielckens and R. Bredehorst, Quantitation of mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins, in: “ADP-ribosylation reactions”, O. Hayaishi and K. Ueda, ed., Academic Press, New York (1982).Google Scholar
  17. 17.
    P. Mandel, H. Okazaki and C. Niedergang, Poly(adenosine diphosphate ribose), in: “Progress in Nucleic Acid Res. Molec. Biol.” vol. 27, Academic Press, New York (1982).Google Scholar
  18. 18.
    C. Niedergang and P. Mandel, Isolation and quantitation of poly(ADP-ribose), in: “ADP-ribosylation reactions”, O. Hayaishi and K. Ueda, ed., Academic Press, New York (1982).Google Scholar
  19. 19.
    H. Okazaki, C. Niedergang and P. Mandel, Purification and properties of calf thymus polyadenosine diphosphate ribose polymerase, FEBS Lett. 62:255–258 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    M.E. Ittel, J. Jongstra-Bilen, C. Niedergang, P. Mandel and E. Delain, DNA- poly(ADP-ribose) polymerase complex: isolation of the DNA wrapping the enzyme molecule, in: “ADP-ribosylation of proteins”, F.R. Althaus, H. Hilz and S. Shall, ed., Springer-Verlag, Berlin-Heidelberg (1985).Google Scholar
  21. 21.
    C. Chypre, C. Le Calvez, F. Hog, M.O. Revel, M. Jesser and P. Mandel, Phosphorylation de la poly(ADP-ribose) polymerase cytoplasmique liée à des particules ribonucléoprotéiques libres par une protéine kinase C associée, C. R. Acad. Sci. Paris, t. 309, Série III (1989).Google Scholar
  22. 22.
    M. Jesser, C. Chypre, A. Rendon, F. Hog and D. Jung, ADP-ribosylation of cytosqueletal structures of animal cells by a cytoplasmic ADP-ribosyl transferase (in preparation).Google Scholar
  23. 23.
    H. Okazaki, J.P. Delaunoy, F. Hog, J. Bilen, C. Niedergang, E.E. Crepy, M. Ittel and P. Mandel, Studies on poly ADPR polymerase using the specific antibody, Biochem. Biophys. Res. Commun. 97:1517–1520 (1980).CrossRefGoogle Scholar
  24. 24.
    M. Miwa and T. Sugimura, Structure and properties of poly(ADP-ribose), in: “ADP-ribosylation reactions”, O. Hayaishi and K. Ueda, ed., Academic Press, New York (1982).Google Scholar
  25. 25.
    G. De Murcia, J. Jongstra-Bilen, M.E. Ittel, P. Mandel and E. Delain, Poly(ADP-ribose) polymerase auto-modification and interaction with DNA: electron microscopic visualization, EMBO J. 2:543–548 (1983).PubMedGoogle Scholar
  26. 26.
    F.R. Althaus and C. Richter, “ADP-ribosylation of proteins”, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo (1987).CrossRefGoogle Scholar
  27. 27.
    S. Shall, ADP-ribosylation of proteins: a ubiquitous cellular control mechanism, Biochem. Soc. Trans. 17:317–322 (1989).PubMedGoogle Scholar
  28. 28.
    C. Rochette-Egly, M.E. Ittel, J. Bilen and P. Mandel, Effect of nicotinamide on RNA and DNA synthesis and on poly(ADP-ribose) polymerase activity in normal and phytohemagglutinin stimulated human lymphocytes, FEBS Lett. 120:7–11 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    M.E. Ittel, J. Jongstra-Bilen, C. Rochette-Egly and P. Mandel, Involvement of polyADP-ribose polymerase in the initiation of phytohemagglutinin induced human lymphocyte proliferation, Biochem. Biophys. Res. Commun. 116:428–434 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Mandel, C. Niedergang, M.E. Ittel, H. Thomassin and A. Masmoudi, PolyADP-ribose polymerase and ADP-ribosylation reaction, in: “Role of RNA and DNA in brain function”, A. Giuditta, B.B. Kaplan, C. Zomzely-Neurath, ed., Martinus Nijhoff (1986).Google Scholar
  31. 31.
    A.I. Caplan and M.J. Rosenberg, Interrelationship between poly(adenosine diphosphoribose) synthesis, intracellular NAD levels and muscle or cartilage differentiation from embryonic chick limb mesodermal cells, Proc. Natl. Acad. Sci. USA 72:1852–1857 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Caplan, C. Niedergang, H. Okazaki and P. Mandel, Poly ADP-ribose polymerase: self ADP-ribosylation, the stimulatioby DNA, and the effects on nuclease formation and stability, Arch. Biochem. Biophys. 198:60–69 (1979).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Caplan, C. Niedergang, H. Okazaki and P. Mandel, Poly(ADP-ribose) levels as a function of chick limb mesenchymal cell development as studied in vitro and in vivo, Developm. Biol. 72:102–109 (1979).CrossRefGoogle Scholar
  34. 34.
    K. Ueda and O. Hayaishi, ADP-ribosylation, Ann. Rev. Biochem. 54:73–100 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    H.K. Muller, Über Linsenstoffwechseluntersuchungen, Ber. Dtsch. Ophtalmol. Ges. 50:167–171 (1934).Google Scholar
  36. 36.
    J. Nordmann, Contribution à l’étude de la cataracte acquise, Diss. Strasbourg (1926).Google Scholar
  37. 37.
    R.A. Weale, “The aging lens”, H.K. Lewis and Co. Ltd, London (1963).Google Scholar
  38. 38.
    O. Hockwin, F. Rast, H. Rink, J, Munnighoff and H. Twenhoven, Water content of lenses of different species, Interdiscipl. Top. Gerontol. 13:239–246 (1978).Google Scholar
  39. 39.
    C.A. Paterson, Antero-posterior cation gradients in bovine lenses, Investigative. Ophtalmol. 12:861–863 (1973).Google Scholar
  40. 40.
    H. Rink, J. Munnighoff and O. Hockwin, Sodium potassium and calcium contents of bovine lenses in dependence on age, Ophtalm. Res. 9:129–135 (1977).CrossRefGoogle Scholar
  41. 41.
    J. Nordmann and P. Mandel, Le métabolisme des glucides dans le cristallin. I. La glycolyse anaérobie, Ann. Occulist. 185:929–943 (1952).Google Scholar
  42. 42.
    P. Mandel and J. Zimmer, Etude sur la répartition des acides pyruviques et lactique dans le cristallin des bovidés, CR. Soc. Biol. 146:762–764 (1952).Google Scholar
  43. 43.
    P. Mandel and L. Schmitt, Etude de l’activité adénosinetriphospha-tasique et hexokinasique de cristallins de lapins soumis à une irradiation locale par les rayons X, Experientia 12:223–226 (1956).PubMedCrossRefGoogle Scholar
  44. 44.
    J. Klethi and P. Mandel, Variations des activités enzymatiques du cycle oxydatif direct du cristallin au cours du vieillissement, C.R. Soc. Biol. 153:337–340 (1959).Google Scholar
  45. 45.
    J. Nordmann and P. Mandel, Etude quantitative des composés phosphorés acido-solubles du cristallin de mammifères jeunes et âgés, C.R. Acad. Sci. 325:834–835 (1952).Google Scholar
  46. 46.
    J. Klethi and P. Mandel, Les nucléotides libres du cristallin de veau, Biochem. Biophys. Acta 24:642–643 (1957).PubMedCrossRefGoogle Scholar
  47. 47.
    J. Klethi and P Mandel, Recherches sur la biochimie du cristallin. II. Les nucléotides libres du cristallin, Bull. Soc. Chim. Biol. 50:709–723 (1968).PubMedGoogle Scholar
  48. 48.
    J. Klethi and P. Mandel, Recherches sur la biochimie du cristallin. III. Etudes des variations du taux des nucleotides libres en fonction de l’âge des cellules cristalliniennes, Bull. Soc. Chim. Biol. 50:1205–1214 (1968).PubMedGoogle Scholar
  49. 49.
    N. Virmaux and P. Mandel, Succinic dehydrogenase activity and oxidative phosphorylation of the mitochondria in the cristalline lens of bovines, Nature, 197:792 (1963).PubMedCrossRefGoogle Scholar
  50. 50.
    J.C. Bizec, J. Klethi and P. Mandel, Cyclic guanosine 3′5′ phosphate, guanylate cyclase and cyclic guanosine phosphodiesterase in the eye lens, Biochem. Biophys. Res. Commmun. 106:108–112 (1982).PubMedCrossRefGoogle Scholar
  51. 51.
    P.F. Urban, N. Virmaux and P. Mandel, Kinetics of labelling of eye lens RNA’s, Biochem. Biophys. Res. Commun. 20:10–14 (1965).PubMedCrossRefGoogle Scholar
  52. 52.
    N. Virmaux, P.F. Urban and P. Mandel, Les acides ribonucléiques du cristallin, Doc. Ophtal. 20:13 (1966).Google Scholar
  53. 53.
    P. Mandel, U. Dardenne and A. Lessinger, Incorporation et dégradation de la méthionine par le cristallin de bovidés, C.R. Acad. Sci. 245:985–987 (1957).Google Scholar
  54. 54.
    M.S. Kanungo, “Biochemistry of Ageing”, Academic Press, London (1980).Google Scholar
  55. 55.
    J.C. Bizec, J. Klethi and P. Mandel, Regulation of protein adenosine dipshophate ribosylation in bovine lens during aging, Ophtalm. Res. 21:175 – 183 (1989).CrossRefGoogle Scholar
  56. 56.
    G.B. Price, S.P. Modak and T. Makinodan, Age-associated changes in the DNA of mouse tissue, Science 171:917–920 (1971).PubMedCrossRefGoogle Scholar
  57. 57.
    C.J. Chetsanga, V. Boyd, L. Peterson and K. Rushlow, Single-stranded regions in DNA of old mice, Nature 253:130–131 (1975).PubMedCrossRefGoogle Scholar
  58. 58.
    B.T. Hill and R.D.H. Whelan, Studies on the degradation of aging chromatin DNA by nuclear and cytoplasmic factors and deoxyribo-nucleases, Gerontology 24:326–336 (1978).PubMedCrossRefGoogle Scholar
  59. 59.
    H.C. Birnboim and J.J. Jevcak, Fluorimetric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation, Cancer Res. 41:1889–1892 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Paul Mandel
    • 1
  1. 1.Centre de Neurochimie du CNRSStrasbourg CedexFrance

Personalised recommendations