Advertisement

Schwann Cell Proliferation during Postnatal Development, Wallerian Degeneration and Axon Regeneration in Trembler Dysmyelinating Mutant

  • Herbert Koenig
  • Anh Do Thi
  • Badia Ferzaz
  • Annie Ressouches
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 296)

Abstract

During mouse ontogenesis, Schwann cells in peripheral nerves migrate along the axons and begin the process of ensheathment (1,2). Subsequently, Schwann cells divide intensely, from the end of gestation (1) till the first days of postnatal development (3,4). The high rate of Schwann cell proliferation decreases rapidly and stops totally during the process of myelination (1,3).

Keywords

Plasminogen Activator Schwann Cell Myelin Sheath Tibial Nerve Wallerian Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Peters and A.R. Muir, The relationship between axons and Schwann cells during development of peripheral nerves in the rat, Q.J. Exp. Physiol., 64:117 (1959).Google Scholar
  2. 2.
    C.C. Speidel, In vivo studies of myelinated nerve fibers, Int. Rev. Cytol., 16:173 (1964).PubMedCrossRefGoogle Scholar
  3. 3.
    A.K. Asbury, Schwann cell proliferation in developing mouse sciatic nerve, J. Cell Biol., 34:736 (1967).CrossRefGoogle Scholar
  4. 4.
    L.C. Terry, G.M. Bray and A.J. Aguayo, Schwann cell multiplication in developing rat unmyelinated nerves. A radioautographic study, Brain Res., 69:144 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Thomas, Quantitative histology of Wallerian degeneration; nuclear populations in two nerves of different fibre spectrum, J. Anat., 82:135 (1948).Google Scholar
  6. 6.
    M. Abercrombie and J. Santler, An analysis of growth in nuclear population during Wallerian degeneration, J. Cell Comp. Physiol., 50:429 (1957).CrossRefGoogle Scholar
  7. 7.
    W.G. Bradley and A.K. Asbury, Duration of synthesis phase in neurilemma cells in mouse sciatic nerve during degeneration, Exp. Neurol., 26:275 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    P.S. Spencer, R.G. Pellegrino, S. M. Ross, M.J. Politis and M.I. Sabri, The regulation of Schwann cell function in degenerative disorders of the nervous system, in: Molecular Pathology of Nerve and Muscle, A.D. Kidman, Ed., Humana Press, Clifton 3–19 (1983).CrossRefGoogle Scholar
  9. 9.
    J.B. Cavanagh and M.F. Gysbers, Dyingback above nerve ligature produced by acrylamide, Acta Neuropathol., 51:169 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    P.S. Spencer and H.H. Schaumburg, Pathobiolgy of neurotoxic axonal degeneration, in: Physiology and Pathobiology of Axons, S.G. Waxman, Ed., Raven Press, New York, pp 265–282 (1978).Google Scholar
  11. 11.
    J.W. Griffin and D.L. Price, Schwann and glial responses in β, β1 iminodiproprionitrile intoxication. I. Schwann cell and oligodendrocyte in growths. J. Neurocytol., 10:995 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    P.J. Dyck, Experimental hypertrophic neuropathy: pathogenesis of onion-bulb formations, Arch. Neurol., 21:73 (1969).Google Scholar
  13. 13.
    T.H. Moss, Segmental demyelination in the peripheral nerves of mice affected by a hereditary neuropathy (Dystonia musculorum), Acta Neuropathol., 53:51 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    C.S. Perkins, A.J. Aguayo and G.M. Bray, Schwann cell multiplication in Trembler mice, Neuropathol. Applied Neurobiol., 7:115 (1981).CrossRefGoogle Scholar
  15. 15.
    S.M. Hall and N. Gregson, The effects of mitomycin C on the process of regeneration in the mammalian peripheral nervous system, Neuropathol. and Applied Neurobiol., 3:65 (1977).CrossRefGoogle Scholar
  16. 16.
    J.L. Salzer and R.P. Bunge, Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury, J. Cell Biol., 84:739 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    J.L. Salzer, R.P. Bunge and L. Glaser, Studies of Schwann cell proliferation. III. Evidence for surface localization of the neurite mitogen, J. Cell Biol., 84:767 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Sobue and D. Pleasure, Adhesion of axolemma fragments to Schwann cells: a signal and target specific process closely linked to axolemmal induction of Schwann cell mitosis, J. Neurosci., 5:379 (1985).PubMedGoogle Scholar
  19. 19.
    M. M. Ayers and R. McD. Anderson, Onion bulb neuropathy in the Trembler mouse: A model of hypertrophic interstitial neuropathy (Dejerine-Sottas) in man, Acta Neuropathol., 25:54 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    B. Ferzaz, H. Koenig and A. Ressouches, Axonal regeneration in Trembler mouse, a Schwann cell mutant, C.R. Acad. Sci. Paris, 309:377 (1989).PubMedGoogle Scholar
  21. 21.
    M.J. Politis, N. Sternberger, K. Ederle and P.S. Spencer, Studies on the control of myelinogenesis. IV. Neuronal induction of Schwann cell myelin-specific protein synthesis during nerve fiber regeneration, J. Neurosci., 2:1252 (1982).PubMedGoogle Scholar
  22. 22.
    P.M. Wood and R.P. Bunge, Evidence that sensory axons are mitogenic for Schwann cells, Nature, 256:662 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    H.L. Koenig, N.A. Do Thi and B. Ferzaz, Proliferation of Trembler mouse Schwann cells in culture and during Wallerian degeneration, Soc. Neurosci., 14:483 (1988).Google Scholar
  24. 24.
    R.G. Pellegrino and P.S. Spencer, Schwann cell mitosis in response to regenerating peripheral axons in vivo, Brain Res., 341:16 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Krystosek and N.W. Seeds, Peripheral neurons and Schwann cells secrete plasminogen activator, J. Cell Biol., 98:773 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    R. N. Pittman, Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons, Devl Biol., 110:91 (1985).CrossRefGoogle Scholar
  27. 27.
    A. Alvarez-Buylla and J.E. Valinsky, Production of P.A. in cultures of superior cervical ganglia and isolated Schwann cells, Proc. Natl Acad. Sci., USA, 82:3519 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    N. Kalderon, Schwann cell proliferation and localized proteolysis: Expression of P.A. activity predominates in the proliferating cell populations, Proc. Natl. Acad. Sci. USA, 81:7216 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Baron-Van Evercooren, P. Leprince, B. Rogister, P.P. Lefebvre, P. Delree, I. Selak and G. Moonen, Plasminogen activators in developing P.N.S. cellular origin and mitogenic effect, Devl Brain Res., 36:101 (1987).CrossRefGoogle Scholar
  30. 30.
    R.N. Pittman, J. K. Ivins and H.M. Buettner, Neuronal plasminogen activators: Cell surface binding sites and involvement in neurite outgrowth, J. Neurosci., 9:4269 (1989).PubMedGoogle Scholar
  31. 31.
    J.C. Unkeless, S. Gordon and E. Reich, Secretion of plasminogen activator by stimulated macrophages, J. Exp. Med., 139:834 (1974).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Pöllänen, K. Hedman, L.S. Nielsen, K. Danø and A. Vaheri, Ultrastructural localization of plasma membrane-associated urokinasetype plasminogen activator at focal contacts, J. Cell Biol., 106:87 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    U. Hedner, Studies on an inhibitor of plasminogen activation in human serum, Thromb. Diath. Haemorrh., 30:414 (1973).Google Scholar
  34. 34.
    J. Koenig, D. Hantaz, S. de la Porte, N.A. Do Thi, J.M. Bourre, F. La Chapelle and H.L. Koenig, “In vitro” evidence for a neurite growth-promoting activity in Trembler mouse serum, Int. J. Devl Neurosci., 7:281 (1989).CrossRefGoogle Scholar
  35. 35.
    A. Bignami, G. Cella and N.H. Chi, Plasminogen activators in rat neural tissues during development and in Wallerian degeneration, Acta Neuropathol., 58:224 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    W.T. Norton, C.F. Brosnan, W. Cammer and E. Goldmuntz, Some aspects of mechanisms of inflammatory demyelination, in: NATO ASI Series H43: Cellular and molecular biology of myelination, G. Jeserich et al., Eds, Springer-Verlag, pp. 101–113 (1990).CrossRefGoogle Scholar
  37. 37.
    J.W. Bigbee, J.E. Yoshino and G.H. De Vries, Morphological and proliferative responses of cultured Schwann cells following rapid phagocytosis of a myelin-enriched fraction, J. Neurocytol., 16: 487 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    W. Beuche and R.L. Friede, The role of non-resident cells in Wallerian degeneration, J. Neurocytol., 13:767 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    G. Stoll, J.W. Griffin, C.Y. Li and B.D. Trapp, Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation, J. Neurocytol., 18:671 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    R.N. Pittman and H.M. Buettner, Degradation of extracellular matrix by neuronal proteases, Devl. Neurosci., 11:361 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Herbert Koenig
    • 1
  • Anh Do Thi
    • 1
  • Badia Ferzaz
    • 1
  • Annie Ressouches
    • 1
  1. 1.CNRS-URA 1126Université de Bordeaux ITalence CedexFrance

Personalised recommendations