Advertisement

DNA Content Revealed by Cytophotometry in Neurons: Variability Related to Neuroplasticity

  • Stefano Geuna
  • Alessandro Poncino
  • Maria G. Giacobini Robecchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 296)

Abstract

Cytophotometry after Feulgen staining provided a new tool for the determination of nuclear DNA content. Controversial data on the DNA content of neurons in different species of animals, as well as in different regions of the central and peripheral nervous system, have been reported.

Keywords

Purkinje Cell Purkinje Neuron Cerebellar Purkinje Cell Giant Neuron Feulgen Staining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barni, S., Bernocchi, G., and Biggioggera, M., 1983, Chromatin organization in frog Purkinje neurons during annual cycle: cytochemical and ultrastructural studies, Basic, Appl. Histochem., 27:129–140.Google Scholar
  2. Bernocchi, G., and Scherini, E., 1986a, DNA content in neurons, in: “Role of RNA and DNA in Brain Function”, A. Giuditta, B.B. Kaplan, C. Zomzely-Neurath, eds., Martinus Nijhoff Publishing, Boston.Google Scholar
  3. Bernocchi, G., Barni, S., and Scherini, E., 1986b, The annual cycle of Erinaceus europeanus L. as a model for a further study of cytochemical heterogenity in Purkinje neuron nuclei, Neuroscience, 17:427–433.CrossRefGoogle Scholar
  4. Borrione, P., Cervella, P., Geuna, S., Giacobini Robecchi, M.G., Poncino, A., and Silengo, L., Selective DNA amplification in adult spinal ganglion neurons: a neuroplasticity mechanism in lizard tail regeneration, in preparation.Google Scholar
  5. Bregnard, A., Knusel, A., and Kuenzle, C.C., 1975, Are all the neuronal nuclei polyploid?, Histochemistry, 43:59–61.PubMedCrossRefGoogle Scholar
  6. Brennard, J., Chinault, A.C., Konecki, D.S., Melton, D.V., and Caskey, C.T., 1982, Cloned c-DNA sequences of the hypoxanthine/guanine phosphoribosyltransferase gene from a mouse neuroblastoma cell line found to have amplified genomic sequences, Proc. Natl. Acad. Sci. USA, 59:233–248.Google Scholar
  7. Brodsky, V.J., Marshak, T.L., Mares, V., Lodin, Z., Fulop, Z., and Lebedev, E.A., 1979, Constancy and variability in the content of DNA in cerebellar Purkinje cell nuclei, Histochemistry, 59:233–248.PubMedCrossRefGoogle Scholar
  8. Chetverukhin, V.K., Salivanova, G.V., Onischenko, L.S., Vlasova, T.D., and Polenov, A.L., 1989, A cytophotometric analysis of the structure of hypotalamic cell populations in the frog, Rana temporaria (L.), with special reference to seasonal changes in the chromatin status, Histochemistry, 88:629–636.Google Scholar
  9. Coggeshall, R.E., Yaksta, B.A., and Swartz, F.J., 1970, A cytophotometric analysis of the DNA in the nucleus of the giant cell, R-2, in Aplysia, Chromosoma, 32:205–212.Google Scholar
  10. Cohen, J., Mares, V., and Lodin, Z., 1973, DNA content of purified preparations of mouse Purkinje neurons isolated by a velocity sedimentation technique, J. Neurochem., 20:651–657.PubMedCrossRefGoogle Scholar
  11. Cox, P.G., 1969, Some aspects of tail regeneration in the lizard, Anolis carolinensis, J. Exp. Zool., 171:127–150.CrossRefGoogle Scholar
  12. De Marianis, B., and Giuditta, A., 1978, Separation of nuclei with different DNA content from the subesoephageal lobe of octopus brain, Brain Res., 154:134–136.PubMedCrossRefGoogle Scholar
  13. De Marianis, B., Olmo, E., and Giuditta, A., 1979, Excess DNA in the nuclei of the subesophageal region of octopus brain, J. Comp. Neurol., 186:293–300.PubMedCrossRefGoogle Scholar
  14. Duffy, M.T., Simpson, S.B.Jr., Liebich, D.R., and Davis, B.M., 1990, Origin of spinal cord axons in the lizard regenerated tail: supernormal projections from local spinal neurons, J. Comp. Neurol., 293:208–222.PubMedCrossRefGoogle Scholar
  15. Filogamo, G., and Vigliani, F., 1954, Ricerche sperimentali sulla correlazione tra estensione del territorio di innervazione e grandezza e numero delle cellule gangliari del plesso mienterico (di Auerbach) nel cane, Riv. Patol. Nerv. Ment., 75:1–32.Google Scholar
  16. Filogamo, G., and Lievre, C., 1955a, Aumento di numero delle cellule nervose e moltiplicazione cellulare nei gangli del plesso di Auerbach, in condizioni di esaltata attività funzionale, Boll. Soc. It. Biol. Sper., 31:717–719.Google Scholar
  17. Filogamo, G., and Lievre, C., 1955b, Comportamento delle cellule nervose del plesso mienterico, dell’intestino normale ed ipertrofico, nell’ansa alla Thiry-Vella, Boll. Soc. Piem. Chir., 25:1–3.Google Scholar
  18. Filogamo, G., 1986, Neuronal modulation by number and by volume: a review and critical analysis, in:” Model Systems of Development and Aging of the Nervous System”, A. Privat, P.S. Timiras, E. Giacobini, J. Lauder, eds., Martinus Nijhoff Publishing, Boston.Google Scholar
  19. Fujita, S., 1974, DNA costancy in neurons of the human cerebellum and spinal cord as revealed by Feulgen cytophotometry and cytofluorometry, J. Comp. Neurol., 155:195–202.PubMedCrossRefGoogle Scholar
  20. Gabella, G., and Gaia, E., 1967, La proliferazione cellulare nel plesso di Auerbach di ratto in accrescimento ed in condizioni sperimentali, Boll. Soc. It. Biol. Sper., 43:1584–1586.Google Scholar
  21. Geuna, S., and Poncino, A., 1988a, Analisi citofotometrica del contenuto di DNA di neuroni del plesso mienterico di Auerbach, Boll. Soc. It. Biol. Sper., 64:775–777.Google Scholar
  22. Geuna, S., Poncino, A., and Robecchi, M.G., 1988b, Nuclei of neurons in relation to innervation territory: gangliar neurons innervating the regenerated tail of sauri, Neurosci. Lett., Suppl.33:98 (abstr.).Google Scholar
  23. Geuna, S., Giacobini Robecchi, M.G., and Poncino, A., Nuclear hypertrophy and DNA content changes in sensory neurons during reinnervation of the regenerated lizard tail, submitted for publication.Google Scholar
  24. Giacobini Robecchi, M.G., Cannas, M., and Filogamo, G., 1985, Increase in number and volume of myenteric neurons in the adult rat, Int. J. Devl. Neurosci., 3:673–676.CrossRefGoogle Scholar
  25. Giacobini Robecchi, M.G., Poncino, A., Geuna, S., Giaconetti, S., and Filogamo, G., 1988, DNA content in neurons of Auerbach’s plexus under experimental conditions in adult rats, Int. J. Devl. Neurosci., 6:109–115.CrossRefGoogle Scholar
  26. Giuditta, A., Libonati, M., Packard, A., and Prozzo, N., 1970, Nuclear counts in the brain lobes of Octopus vulgaris as a function of body size, Brain Res., 25:55–62.CrossRefGoogle Scholar
  27. Giuditta, A., Abrescia, P., and Rutigliano, B., 1978, Effect of electroshock on thymidine incorporation into rat brain DNA, J. Neurochem., 31:983–987.PubMedCrossRefGoogle Scholar
  28. Herman, C.J., and Lapham, L.W., 1969, Neuronal polyploidy and nuclear volumes in the cat Central Nervous System, Brain Res., 15:35–48.PubMedCrossRefGoogle Scholar
  29. Hobi, R., Studer, M., Ruch, F., and Kuenzle, C.C., 1984, The DNA content of cerebral cortex neurons. Determination by cytophotometry and high performance liquid cromatography, Brain Res., 305:209–219.PubMedCrossRefGoogle Scholar
  30. Huges, M., and New, D., 1959, Tail regeneration in geckonid lizard, Sphearodactylus, J. Embryol. Exp. Morph., 7:281–302.Google Scholar
  31. Kuenzle, C.C., Bregnard, A., Hubscher, U., and Ruch, F., 1978, Extra DNA in forebrain cortical neurons, Exp. Cell. Res., 113:151–160.PubMedCrossRefGoogle Scholar
  32. Lasek, R.J., and Dower, W.J., 1971, Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons, Science, 17:278–280.CrossRefGoogle Scholar
  33. Mann, D.M.A., Yates, P.O., and Barton, C.M., 1978, The DNA content of Purkinje cells in mammals, J. Comp. Neurol., 180:345–348.PubMedCrossRefGoogle Scholar
  34. Mares, V., Lodin, Z., and Sacha, J., 1973, A cytochemical and autoradiographic study of nuclear DNA in mouse Purkinje cells, Brain Res., 53:273–289.PubMedCrossRefGoogle Scholar
  35. Mares, V., and van der Ploeg, M., 1980, Cytophotometric re-investigation of DNA content in Purkinje cells of the rat cerebellum, Histochemistry, 69:161–167.PubMedCrossRefGoogle Scholar
  36. Mares, V., Crkovska, J., Marshak, T.L., and Stipek, S., 1985, DNA content in nerve cells nucleus. A biochemical and cytophotometric study of the rat cerebrum, Neuroscience, 16:45–47.PubMedCrossRefGoogle Scholar
  37. Marshak, T., Mares, V., and Brodsky, V., 1985, An attempt to influence the DNA content in postmitotic Purkinje cells of the cerebellum, Acta Histochem., 76:193–200.PubMedCrossRefGoogle Scholar
  38. Mcllwain, D.L., and Capps-Covey, P., 1976, The nuclear DNA content of large ventral spinal neurons, J. Neurochem., 27:109–112CrossRefGoogle Scholar
  39. Morselt, A.F., Braakman, D.J., and James, J., 1972, Feulgen-DNA and fast green histone estimations in individual cell nuclei of the cerebellum of young and old rats, Acta Histochem., 43:281–286.PubMedGoogle Scholar
  40. Pannese, E., 1963, Investigations on the ultrastructural changes of the spinal ganglion neurons in the course of axon regeneration and cell hypertrophy, Zeitschrift fur Zellforschung, 61:561–586.CrossRefGoogle Scholar
  41. Poncino, A., Geuna, S., Scherini, E., Giacobini Robecchi, M.G., and Filogamo, G., 1990, DNA synthesis experimentally induced in neurons: tetraploidy or hyperdiploid?, Int. J. Devl. Neurosci., 8:621–623.CrossRefGoogle Scholar
  42. Reinis, S., 1972, Autoradiographic study of 3H-thymidine incorporation into brain DNA during learning, Physiol. Chem. Phys., 4:391–397.PubMedGoogle Scholar
  43. Reinis, S., and Lamble, R.W., 1972, Labeling of brain DNA by 3H-thymidine during learning, Physiol. Chem. Phys., 4:335–338.PubMedGoogle Scholar
  44. Rouah, E., Wilson, D.R., Amstrong, D., and Darlington, G.J., 1989, N-myc amplification and neuronal differentiation in human primitive neuroectodermal tumors of the central nervous system, Cancer Res., 49: 1797–1801.PubMedGoogle Scholar
  45. Schimke, R.T., Roos, D.S., and Brown, P.C., 1987, Amplification of genes in somatic mammalian cells, Methods in Enzymology, 151:85–104.PubMedCrossRefGoogle Scholar
  46. Schwab, M., Alitalo, K., Klempnauer, K.H., Varmus, H.E., Bishop, J.M., Gilbert, F., Brodeur, G., Goldstein, M., and Trent, J., 1983, Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and neuroblastoma tumors, Nature, 305:245–248.PubMedCrossRefGoogle Scholar
  47. Schwab, M., Ellison, J., Busch, M., Rosenau, V., Varmus, H.E., and Bishop, J.M., 1984, Enhanced expression of the human gene c-myc consequent to amplification of DNA may contribute to malignat progression of neuroblastoma, Proc. Natl. Acad. Sci. USA, 81:4940–4944.PubMedCrossRefGoogle Scholar
  48. Simpson, S.B.J, 1968, Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis, J. Comp. Neurol., 134:193–210.PubMedCrossRefGoogle Scholar
  49. Swartz, F.J., and Bhatnagar, K.P., 1981, Are CNS neurons polyploid? A critical analysis based upon cytophotometrie study of the DNA content of cerebellar and olfactory bulbar neurons of the rat, Brain Res., 208:267–281.PubMedCrossRefGoogle Scholar
  50. Terni, T., 1920, Sulla correlazione fra ampiezza del territorio di innervazione e grandezza delle cellule gangliari. II. Ricerche sui gangli spinali che innervano la coda rigenerata, nei sauri (Gongylus ocellatus), Arch. It. Anat. Embriol., 17:507–543.Google Scholar
  51. Turner, J.E., and Singer, M., 1972, Some morphological and ultrastructural changes in the ependyma of the amputation stump during early regeneration of the tail in the lizard, Anolis carolinensis, J. Morph., 140:257–270.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Stefano Geuna
    • 1
  • Alessandro Poncino
    • 1
  • Maria G. Giacobini Robecchi
    • 1
  1. 1.Dipartimento di Anatomia e Fisiologia Umana, Sezione di Neuroanatomia e NeuroembriologiaUniversità di TorinoTorinoItaly

Personalised recommendations