Advertisement

Brain Extracellular Matrix and Nerve Regeneration

  • Amico Bignami
  • Richard Asher
  • George Perides
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 296)

Abstract

Over the past five years, we have made some progress in our studies on the composition of brain extracellular matrix. As in previous work on GFA protein, a major component of glial scars, the motivation for these studies was to find out why axons do not regenerate in mammalian CNS. In fact, we started doing research on brain extracellular matrix because the experimental evidence suggested that the glial scar per se, could not explain the riddle of CNS regeneration (Bignami et al., 1986).

Keywords

Axonal Growth Glial Scar Link Protein Axonal Growth Cone Spinal Cord White Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aruffo, A., Stamenkovic, I., Melnick, M., Underbill, C. B., and Seed, B., 1990, CD44 is the principal cell surface receptor for hyaluronate, Cell, 61:1303.PubMedCrossRefGoogle Scholar
  2. Asher, R., Perides, G., Vanderhaeghen, J.-J., and Bignami, A., 1990, The extracellular matrix of central nervous system white matter: demonstration of an hyaluronate-protein complex, J. Neurosc. Res., 27:in press.Google Scholar
  3. Baehr, M., and Bunge, R. P., 1990, Growth of adulifrat retinal ganglion cell neurites on astrocytes, Glia, 3:293.PubMedCrossRefGoogle Scholar
  4. Bairati, A., 1953, Spreading factor and mucopolysaccharides in the central nervous cystem of vertebrates, Experientia, 9:461.PubMedCrossRefGoogle Scholar
  5. Bignami, A., and Dahl, D., 1974, Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein, J. Comp. Neurol., 153:27.PubMedCrossRefGoogle Scholar
  6. Bignami, A., and Dahl, D., 1986, Brain-specific hyaluronate-binding protein: an immunohistological study with monoclonal antibodies of human and bovine CNS, Proc. Nat. Acad. Sci. (USA), 83:3518.CrossRefGoogle Scholar
  7. Bignami, A., and Dahl, D., 1988, Expression of brain-specific hyaluronectin (BHN), a hyaluronate-binding protein, in dog postnatal development, Exp. Neurol., 99:107.PubMedCrossRefGoogle Scholar
  8. Bignami, A., and Dahl, D., 1989, Vimentin-GFAP transition in primary dissociated cultures of rat embryo spinal cord, Int. J. Dev. Neurosci., 7:343.PubMedCrossRefGoogle Scholar
  9. Bignami, A., Chi, N. H., and Dahl, D., 1986, The role of neuroglia in axonal growth and regeneration, in: “Neural Transplantation and Regeneration,” Das and R. B. Wallace, eds., Springer-Verlag.Google Scholar
  10. Bignami, A., Mansour, H., and Dahl, D., 1989, Glial hyaluronate-binding protein in Wallerian degeneration of dog spinal cord, Glia, 2:391.PubMedCrossRefGoogle Scholar
  11. Dahl, D., and Bignami, A., 1977, Preparation of antisera to neurofilament protein from chicken brain and human sciatic nerve, J. Comp. Neurol., 176:645.PubMedCrossRefGoogle Scholar
  12. Fawcett, J. W., Housden, E., Smith-Thomas, L., and Meyer, R. L., 1989a, The growth of axons in three-dimensional astrocyte cultures, Develop. Biol., 135:449.PubMedCrossRefGoogle Scholar
  13. Fawcett, J. W., Rokos, J., and Bakst, I., 1989b, Oligodendrocytes repel axons and cause axonal growth cone collapse, J. Cell Sci., 92:93.Google Scholar
  14. Goldstein, L. A., Zhou, D. F. H., Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, Jie F., and Butcher, E. C., 1989, A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins, Cell, 56:1063.PubMedCrossRefGoogle Scholar
  15. Hascall, V. C., and Hascall, G. K., 1981, Proteoglycans, in : “Cell Biology of Extracellular Matrix,” E. D. Hay, ed., Plenum Publishing Corp., New York.Google Scholar
  16. Hascall, V. C. and Heinegard, D., 1974, Aggregation of cartilage proteoglycans. II. Oligosaccharide competitors of the proteoglycan-hyaluronic acid interaction, J. Biol. Chem., 249:4242.PubMedGoogle Scholar
  17. Hatten, M. E., 1990, Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain, Trends Neurosci., 13:179.PubMedCrossRefGoogle Scholar
  18. Mansour, H., Asher, R., Dahl, D., Labkovsky, B., Perides, G., and Bignami, A., 1990, Permissive and non-permissive reactive astrocytes: immunofluorescence study with antibodies to the glial hyaluronate-binding protein, J. Neurosci. Res., 25:300.PubMedCrossRefGoogle Scholar
  19. Nicholson, C., and Rice, M. E., 1986, The migration of substances in the neuronal microenvironment, in: “The Neuronal Microenvironment,” H. F. Cserr, ed., Ann. NY Acad. Sci.Google Scholar
  20. Noble, M., Fog-Seang, J., and Cohen, J., 1984, Glia are a unique substrate for the in vitro growth of central nervous system neurons, J. Neurosci., 4:1892.PubMedGoogle Scholar
  21. Perides, G., Lane, W. S., Andrews, D., Dahl, D., and Bignami, A., 1989, Isolation and partial characterization of a glial hyaluronate-binding protein, J. Biol. Chem., 264:5981.PubMedGoogle Scholar
  22. Raff, M. C., Miller, R. H., and Noble, M., 1983, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium, Nature, 303:390.PubMedCrossRefGoogle Scholar
  23. Ripellino, J. A., Bailo, M., Margolis, R. U., and Margolis, R. K., 1988, Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum, J. Cell Biol., 106:845.PubMedCrossRefGoogle Scholar
  24. Ripellino, J. A., Margolis, R. U., and Margolis, R. K., 1989, Immunoelectron microscopic localization of hyaluronic acid binding region and link protein epitopes in brain, J. Cell Biol., 108:1899.PubMedCrossRefGoogle Scholar
  25. Rousselet, A., Autillo-Touati, A., Araud, D., and Prochiantz, A., 1990, In vitro regulation of neuronal morphogenesis and polarity by astrocyte-derived factors, Develop. Biol., 137:33.PubMedCrossRefGoogle Scholar
  26. Schwab, M. E., and Caroni, P., 1988, Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro, J. Neurosc., 8:2381.Google Scholar
  27. Smith, G. M., Rutrrishauser, U., Silver, J., and Miller, R. H., 1990, Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth, Develop. Biol., 138:377.PubMedCrossRefGoogle Scholar
  28. Springer, T. A., 1990, Adhesion receptors of the immune system, Nature, 346: 425.PubMedCrossRefGoogle Scholar
  29. Stamenkovic, I., Amiot, M., Pesando, J. M., and Seed, B., 1989, A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family, Cell, 56:1057.PubMedCrossRefGoogle Scholar
  30. Underbill, C. B., and Toole, B. P., 1979, Binding of hyaluronate to the surface of cultured cells, J. Cell Biol., 82:475.CrossRefGoogle Scholar
  31. Underbill, C. B., Chi-Rosso, G., and Toole, B. P., 1983, Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells, J. Biol. Chem., 258:8086.Google Scholar
  32. Van Harreveld, A., Crowell, J., and Malhotra, S. K., 1965, A study of extracellular space in central nervous tissue by freeze-substitution, J. Cell Biol., 25:117.CrossRefGoogle Scholar
  33. Zimmerman, D. R., and Ruoslahti, E., 1989, Multiple domains of the large fibroblast proteoglycan, versican, EMBO J., 8:2975.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Amico Bignami
    • 1
  • Richard Asher
    • 1
  • George Perides
    • 1
  1. 1.Department of Pathology, Spinal Cord Injury Research Laboratory, Department of Veterans Affairs Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations