Facilities Available for Biophysics Research at the Stanford Synchrotron Radiation Laboratory

  • R. Paul Phizackerley
Part of the Basic Life Sciences book series (BLSC, volume 51)


The Stanford Synchrotron Radiation Laboratory (SSRL) is a National Facility that provides synchrotron radiation for research in the fields of biology, chemistry, materials science, medicine, physics and other scientific fields. Of the more than 2000 research proposals that have been submitted over the years from scientists throughout the United States and the rest of the world, ~30% have been in the biological sciences.


Synchrotron Radiation Optical Bench Anomalous Scattering Rotation Camera Protein Crystallography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amemiya, Y., Matsushita, T., Nakagawa, A., Satow, Y., Miyahara, J., and Chíkawa, J., 1988, Design and performance of an imaging plate system for x-ray diffraction study, Nucl. Instr. and Meth., A266: 645.CrossRefGoogle Scholar
  2. Amoros, J. L., Buerger, M. J., and Canut de Amoros, M., 1975, “The Laue Method,” Academic Press, New York.Google Scholar
  3. Cork, C., Hamlin, R., Vernon, W., Xuong, Ng. H., and Perez-Mendez, V., 1975, A xenon-filled multiwire area detector for x-ray diffraction, Acta Cryst., A31: 702.CrossRefGoogle Scholar
  4. Cruickshank, D. W. J., Helliwell, J. R., and Moffat, K., 1987, Multiplicity distribution of reflections in laue diffraction, Acta Cryst., A43: 656.CrossRefGoogle Scholar
  5. Gabriel, A., 1977, Position sensitive x-ray detector, Rev. Sci. Instrum., 48: 1303.Google Scholar
  6. Guss, J. M., Merritt, E. A., Phizackerley, R. P., Hedman, B., Murata, M., Hodgson, K. O., and Freeman, H. C., 1988, Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic “blue” copper protein from cucumbers, Science, 241: 806.CrossRefGoogle Scholar
  7. Hajdu, J., Machin, P. A., Campbell, J. W., Greenough, T. J., Clifton, I. J., Zurek, S., Gover, S., Johnson, L. N., and Elder, M., 1987, Millisecond x-ray diffraction and the first electron density map from laue photographs of a protein crystal, Nature, 329: 178.CrossRefGoogle Scholar
  8. Hedman, B., Frank, P., Penner-Hahn, J. E., Roe, A. L., Hodgson, K. O., Carlson, R. M. K., Brown, G., Cerino, J., Hettel, R., Troxel, T., Winick, H., and Yang, J., 1986, Sulfur K-edge x-ray absorption studies using the 54-pole wiggler at SSRL in undulator mode, Nucl. Instr. and Meth., A246: 797.CrossRefGoogle Scholar
  9. Hendrickson, W. A., Pahler, A., Smith, J. L., Satow, Y., Merritt, E. A., and Phizackerley, R. P., 1988, Crystal structure of core streptavidin determined from multi-wavelength anomalous diffraction of synchrotron radiation, unpublished.Google Scholar
  10. Hendrickson, W. A., Smith, J. L., Phizackerley, R. P., and Merritt, E. A., 1988, Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation, Proteins, 4: 77.CrossRefGoogle Scholar
  11. Hope, H., 1988, Cryocrystallography of biological macromolecules: a generally applicable method, Acta Cryst., B44: 22.Google Scholar
  12. Hope, H., and Yonath, A., 1987, Personal communication.Google Scholar
  13. Hubbard, S. R., 1987, Small-angle x-ray scattering studies of calcium- binding proteins in solution, Ph.D. Thesis, Stanford Univ.Google Scholar
  14. Iwanczyk, J. S., Warburton, W. K., Hedman, B., Hodgson, K. O., and Beyerle, A., 1988, The HgI2 array detector development project, Nucl. Instr. and Meth., A266: 619.CrossRefGoogle Scholar
  15. Merritt, E. A., and Phizackerley, R. P., 1985, Users’ guide to the SSRL Rotation Camera Facility, SSRL Report, 127B-85-V1.Google Scholar
  16. Miake-Lye, R. C., 1983, Anomalous X-ray scattering as a probe of biological structure, Ph.D. Thesis, Stanford Univ.Google Scholar
  17. Miyahara, J., Takahashi, K., Amemiya, Y., Kamiya, N., and Satow, Y., 1986, A new type of x-ray area detector utilizing laser stimulated luminescence, Nucl. Instr. and Meth., A246: 572.CrossRefGoogle Scholar
  18. Moffat, K., Bilderback, D., Schildkamp, W., and Volz, K., 1986, Laue diffraction from biological samples, Nucl. Instr. and Meth., A246: 627.CrossRefGoogle Scholar
  19. Moffat, K., Szebenyi, D. M. E., and Bilderback, D. H., 1984, X-ray laue diffraction from protein crystals, Science, 223: 1423.CrossRefGoogle Scholar
  20. Murthy, H. M. K., Hendrickson, W. A., Orme-Johnson, W. H., Merritt, E. A., and Phizackerley, R. P., 1988, Crystal structure of Clostridium acidi-urici ferredoxin at 5A resolution based on measurements of anomalous x-ray scattering at multiple wavelengths, J. Biological Chem., in press.Google Scholar
  21. Phillips, J. C., 1978, Crystal structure determination using synchrotron radiation, Ph.D. Thesis, Stanford Univ.Google Scholar
  22. Phillips, J. C., Cerino, J. A., and Hodgson, K. 0., 1979, A four-circle diffractometer on a focused, tuneable synchrotron radiation source: mechanical design, computer control and evaluation of system performance, J. Appl. Cryst., 12: 592.CrossRefGoogle Scholar
  23. Phillips, J. C., Templeton, D. H., Templeton, L. K., and Hodgson, K. O., 1978, L1I1-edge anomalous x-ray scattering by cesium measured with synchrotron radiation, Science, 201: 257.CrossRefGoogle Scholar
  24. Phizackerley, R. P., Cork, C. W., Hamlin, R. C., Nielsen, C. P., Vernon, W., Xuong, Ng. H., and Perez-Mendez, V., 1980, Progress report on the development of an area detector data acquisition system for x-ray crystallography and other x-ray diffraction experiments, Nucl. Instr. and Meth., 172: 393.CrossRefGoogle Scholar
  25. Phizackerley, R. P., Cork, C. W., and Merritt, E. A., 1986, An area detector data acquisition system for protein crystallography using multiple-energy anomalous dispersion techniques, Nucl. Instr. and Meth., A246: 579.CrossRefGoogle Scholar
  26. Phizackerley, R. P., Cox, A. D., and Merritt, E. A., unpublished data.Google Scholar
  27. Templeton, D. H., and Templeton, L. K., 1980, Polarized x-ray absorption and double refraction in vanadyl bisacetylacetonate, Acta Cryst., A36: 237.Google Scholar
  28. Templeton, D. H., and Templeton, L. K., 1982, X-ray dichroism and polarized anomalous scattering of the uranyl ion, Acta Cryst., A38: 62.Google Scholar
  29. Templeton, D. H., and Templeton, L. K., 1984, Anomalous scattering measured by single crystal diffraction, SSRL Activity Report 84 /01: IX - 27.Google Scholar
  30. Templeton, D. H., and Templeton, L. K., 1985, X-ray dichroism and anomalous scattering of potassium tetrachloroplatinate(II), Acta Cryst., A41: 365.CrossRefGoogle Scholar
  31. Templeton, L. K., Templeton, D. H., Phizackerley, R. P., and Hodgson, K. 0., 1982, L3-edge anomalous scattering by gadolinium and samarium measured at high resolution with synchrotron radiation, Acta Cryst., A38: 74.CrossRefGoogle Scholar
  32. Wakatsuki, S., and Spann, U., unpublished data.Google Scholar
  33. Warburton, W. K., Iwanczyk, J. S., Dabrowski, A. J., Hedman, B., Penner-Hahn, J. E., Roe, A. L., Hodgson, K. O., and Beyerle, A., 1986, Development of mercuric iodide detectors for XAS and XRD measurements, Nucl. Instr. and Meth., A246: 558.CrossRefGoogle Scholar
  34. Whiting, B. R., Owen, J. F., and Rubin, B. H., 1988, Storage phosphor x-ray diffraction detectors, Nucl. Instr. and Meth. A266: 628.Google Scholar
  35. Wínick, H., 1987, PEP bypasses, in: “Proceedings of SSRL Workshop on PEP as a Synchrotron Radiation Source,” R. Coísson and H. Winick, eds., SSRL, Stanford.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. Paul Phizackerley
    • 1
  1. 1.Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator CenterStanford UniversityStanfordUSA

Personalised recommendations