Advertisement

Laue Crystallography: Application to Virus Crystals

  • Janos Hajdu
  • Trevor J. Greenhough
  • Ian J. Clifton
  • John W. Campbell
  • Annette K. Shrive
  • Stephen C. Harrison
  • Robert C. Liddington
Part of the Basic Life Sciences book series (BLSC, volume 51)

Abstract

Seventy-six years ago, Friedrich, Knipping and von Laue (1912) demonstrated the diffraction of X-rays on a crystal of copper sulphate using white X-radiation. With a stationary crystal and white X-radiation, a large number of lattice planes diffract simultaneously as the Bragg condition is satisfied for each of these planes by at least one wavelength of the spectrum. The wider the wavelength range the more lattice planes become accessible to the Laue geometry (Amoros et al., 1975; Cruickshank et al., 1987). Moreover, with crystals of high symmetry, a full data set may be recorded on a single photograph. The Laue technique did not become a method of data collection because conventional X-ray sources do not have a satisfactory spectrum and because of the difficulties in unravelling the complicated diffraction patterns.

Keywords

Xylose Isomerase Tomato Bushy Stunt Virus Protein Crystallography Daresbury Laboratory Laue Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoros, J. L., Buerger, M. J., and Canut de Amoros, M., 1975, “The Laue Method,” Academic Press, New York.Google Scholar
  2. Arndt, U. W., 1968, The optimum strategy in measuring structure factors, Acta Cryst., B24: 1355.CrossRefGoogle Scholar
  3. Bricogne, C., 1976, Methods and programs for direct-space exploitation of geometric redundancies, Acta Cryst., A32: 832.Google Scholar
  4. Campbell, J. W., Moffat, K., and Helliwell, 1986, Information Quarterly for Protein Crystallography, Daresbury Laboratory, 18: 23.Google Scholar
  5. Campbell, J. W., Clifton, I. J., Elder, M., Machin, P. A., Zurek, S., Helliwell, J. R., Habash, J., Hajdu, J., and Harding, M. M., 1987, in: “Springer Series in Biophysics, Biophysics and Synchrotron Radiation,” A. Bianconi, and A. Congiu Castellano, eds., Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 2: 52.Google Scholar
  6. Cruickshank, D. W. J., Helliwell, J. R., and Moffat, K., 1987, Multiplicity distribution of reflections in laue diffraction, Acta Cryst., A43: 656.CrossRefGoogle Scholar
  7. Elder, M., 1986, Information Quarterly for Protein Crystallography, Dares-bury Laboratory, 19: 31.Google Scholar
  8. Farber, G. K., Machin, P. A., Almo, S., Petsko, G. A., and Hajdu, J., 1988, X-ray Laue diffraction from crystals of xylose isomerase, Proc. Nat. Acad. Sci. USA, 85: 112.CrossRefGoogle Scholar
  9. Friedrich, W., Knipping, P., and Laue, M. von, 1912, Sitzungsberichte der Math. Phys. Klasse, ( Kgl.) Bayerische Akademie der Wissenschaften, Munchen, 303–322.Google Scholar
  10. Greaves, G. N, Bennett, R., Duke, P. J., Holt, R., and Suller, V. P., 1983, X-ray optics and spectral brightness of the superconducting SRS wiggler, Nucl. Inst. Meth., 208: 139.CrossRefGoogle Scholar
  11. Greenough, T. J., and Suddath, F. L., 1986, Oscillation camera data processing. 4. Results and recommendations for the processing of synchrotron radiation data in macromolecular crystallography, J. Appl. Cryst., 19: 400.CrossRefGoogle Scholar
  12. Hajdu, J., and Stuart, D. I, 1985, Information Quarterly for Protein Crystallography, Daresbury Laboratory, 15: 17.Google Scholar
  13. Hajdu, J., Machin, P., Campbell, J. W., Greenhough, T. J., Clifton, I., Zurek, S., Gover, S., Johnson, L. N., and Elder, M., 1987, Millisecond X-ray diffraction and the first electron density map from laue photographs of a protein crystal, Nature, 329: 178.CrossRefGoogle Scholar
  14. Hajdu, J., Acharya, K. R., Stuart, D. I., Barford, D., Johnson, L. N., 1988, Catalysis in enzyme crystals, TIBS, 13: 104.Google Scholar
  15. Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K., and Bricogne, G., 1978, Tomato bushy stunt virus at 2.9A resolution, Nature, 276: 368.CrossRefGoogle Scholar
  16. Helliwell, J. R., 1984, Synchrotron x-radiation protein crystallography: instrumentation, methods and applications, Rep. Prog. Phys., 47: 1403.CrossRefGoogle Scholar
  17. Hogle, J., Kirchhausen, T., and Harrison, S. C., 1983, Divalent cation sites in tomato bushy stunt virus. Difference maps at 2.9A resolution, J. Mol. Biol., 171: 95.CrossRefGoogle Scholar
  18. Machin, P. A., 1985, Information Quarterly for Protein Crystallography, Daresbury Laboratory, 15: 1.Google Scholar
  19. Machin, P. A., 1987, Computational aspects of protein crystal data analysis, J. R. Helliwell, P. A. Machin, M. Z. Papiz, eds., Daresbury Laboratory, DL/SCI/R25, 75–83.Google Scholar
  20. Moffat, K., Szebenyi, D. M. E., and Bilderback, D. H., 1984, X-ray Laue diffraction from protein crystals, Science, 223: 1423.CrossRefGoogle Scholar
  21. Robinson, I. K., and Harrison, S. C., 1982, Structure of the expanded state of tomato bushy stunt virus, Nature, 297: 563.CrossRefGoogle Scholar
  22. Rossmann, M. G., 1979, Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting, J. Appl. Cryst., 12: 225.CrossRefGoogle Scholar
  23. Wood, I. G., Thompson, P., and Matthewman, J. C., 1983, A crystal structure refinement from laue photographs taken with synchrotron radiation, Acta Cryst., B39: 543.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Janos Hajdu
    • 1
  • Trevor J. Greenhough
    • 2
    • 3
  • Ian J. Clifton
    • 2
  • John W. Campbell
    • 2
  • Annette K. Shrive
    • 3
  • Stephen C. Harrison
    • 4
  • Robert C. Liddington
    • 4
  1. 1.Laboratory of Molecular BiophysicsOxford UniversityUK
  2. 2.SERC Daresbury LaboratoryDaresburyUK
  3. 3.Department of PhysicsUniversity of KeeleUK
  4. 4.Howard Hughes Medical Institute and Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations