Laue Photography from Protein Crystals

  • Keith Moffat
  • Donald Bilderback
  • Wilfried Schildkamp
  • Doletha Szebenyi
  • Tsu-yi Teng
Part of the Basic Life Sciences book series (BLSC, volume 51)


The recent advent of intense, polychromatic, pulsed synchrotron x-ray sources has prompted a re-examination of the Laue diffraction technique, particularly as applied to crystals of proteins and other macromolecules. This article reviews briefly the main aspects of the Laue technique, and how it may be applied to the general area of time-resolved crystallography. Applications have as their goal the elucidation of the structure of short-lived intermediates in such processes as enzymatic catalysis, ligand binding and release, and protein folding and unfolding. Knowledge of the structure of such intermediates is critical to a full understanding of molecular mechanisms of action, yet they are inaccessible to conventional x-ray techniques since their lifetimes are typically very much less than one second.


Synchrotron Radiation Protein Crystal Reciprocal Lattice Point Laue Pattern Laue Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amoros, J. L., Buerger, M. J., and Canut de Amoros, M., 1975, “The Laue Method,” Academic Press, New York.Google Scholar
  2. Bilderback, D. H., Moffat, K., and Szebenyi, D. M. E., 1984, Time-resolved Laue diffraction from protein crystals: Instrumental considerations, Nucl. Instr. and Meth., 222: 245.Google Scholar
  3. Bilderback, D., Moffat, K., Owen, J., Rubin, B., Schildkamp, W., Szebenyi, D., Smith Temple, B., Volz, K., and Whiting, B., 1988, Protein crystallographic data acquisition and preliminary analysis using Kodak storage phosphor plates, Nucl. Instr. and Meth., A266: 636.CrossRefGoogle Scholar
  4. Bragg, W. L., 1975, “The Development of X-ray Analysis,” G. Bell and Sons LTD, London.Google Scholar
  5. Cruickshank, D. W. J., Helliwell, J. R., and Moffat, K., 1987, Multiplicity distribution of reflections in Laue diffraction, Acta Cryst., A43: 656.CrossRefGoogle Scholar
  6. Gruner, S. M., 1987, Time-resolved x-ray diffraction of biological materials, Science, 238: 305.CrossRefGoogle Scholar
  7. Hajdu, J., Acharya, K. R., Stuart, D. I., McLaughlin, P. J., Barford, D., Oikonomakos, N. G., Klein, H., and Johnson, L. N., 1987a, Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b, EMBO J., 6: 539.Google Scholar
  8. Hajdu, J., Machin, P. A., Campbell, J. W., Greenhough, T. J., Clifton, I. J., Zurek, S., Cover, S., Johnson, L. N., and Elder, M., 1987b, Millisecond x-ray diffraction and the first electron density map from Laue photographs of a protein crystal, Nature, 329: 178.CrossRefGoogle Scholar
  9. Hajdu, J., Acharya, K. R., Stuart, D. I., Barford, D., and Johnson, L. N., 1988a, Catalysis in enzyme crystals, TIES, 13: 104.Google Scholar
  10. Hajdu, J., Greenhough, T. J., Clifton, I. J., Campbell, J. W., Shrive, A. K., Harrison, S. C., and Liddington, R. C., 1988b, “Brookhaven Symposium on Quantitative Biology,” this volume.Google Scholar
  11. Helliwell, J. R., 1984, Synchrotron x-radiation protein crystallography: instrumentation, methods and applications, Rept. Prog. Phys., 47: 1403.CrossRefGoogle Scholar
  12. Helliwell, J. R., 1985, Protein crystallography with synchrotron radiation, J. Mol. Struct., 130: 63.CrossRefGoogle Scholar
  13. Helliwell, J. R., Habash, J., Cruickshank, D. W. J., Harding, M. M., Greenhough, T. J., Campbell, J. W., Clifton, I. J., Elder, M., Machin, P. A., Papiz, M. Z., and Zurek, S., 1988, The recording and analysis of synchrotron X-radiation laue diffraction photographs from the protein pea lectin and small molecule crystals using a broad wavelength bandpass, 0.2 A = X = 2.5 A, J. Appi. Cryst., in press.Google Scholar
  14. Kalman, Z. H., 1979, On the derivation of integrated reflected energy formulae, Acta Cryst., A35: 634.CrossRefGoogle Scholar
  15. Moffat, K., 1989, Time-resolved macromolecular crystallography, Ann. Rev. Biophys. Biophys. Chem., 18: 309.CrossRefGoogle Scholar
  16. Moffat, K., Szebenyi, D., and Bilderback, D., 1984, X-ray Laue diffraction from protein crystals, Science, 223: 1423.CrossRefGoogle Scholar
  17. Moffat, K., Bilderback, D., Schildkamp, W., and Volz, K., 1986, Laue diffraction from biological samples, Nucl. Instr. and Meth., A246: 627.CrossRefGoogle Scholar
  18. Moffat, K., Bilderback, D., and Schildkamp, W., 1987, Protein crystallography with Laue geometry on wigglers and undulators, in: “Workshop on PEP as a Synchrotron Radiation Source,” R. Coisson and H. Winick, eds., SSRL, Stanford, California.Google Scholar
  19. Moffat, K., Cruickshank, D. W. J., and Helliwell, J., 1987, Laue diffraction from protein crystals theoretical aspects, in: “Biophysics and Synchrotron Radiation Research,” A. Bianconi and A. Congiu Castellano, eds., Springer-Verlag, New York.Google Scholar
  20. Moffat, K., and Helliwell, J. R., 1989, The laue method and its use in time-resolved crystallography, in: “Applications of Synchrotron Radiation,” E. Mandelkow, ed., Springer-Verlag, New York (in press)Google Scholar
  21. Smith Temple, B. R., and Moffat, K., 1987, Computational aspects of protein crystal data analysis, in: “Proceedings of a Daresbury Study Weekend,” J. R. Helliwell, P. A. Machin, and M. Z. Papiz, eds., DL/SCI/R25, SERC, Daresbury.Google Scholar
  22. Szebenyi, D. M. E., Bilderback, D., LeGrand, A., Moffat, K., Schildkamp, W., and Teng, T.-Y., 1988, Trans. Amer. Cryst. Assoc., in press.Google Scholar
  23. Wood, I. G., Thompson, P., and Mathewman, J. C., 1983, A crystal structure refinement from Laue photographs taken with synchrotron radiation, Acta Cryst., B39: 543.CrossRefGoogle Scholar
  24. Wyckoff, R. W. G., 1924, “The Structure of Crystals,” Chemical Catalog Co., New York.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Keith Moffat
    • 1
  • Donald Bilderback
    • 1
    • 2
  • Wilfried Schildkamp
    • 1
  • Doletha Szebenyi
    • 1
  • Tsu-yi Teng
    • 1
  1. 1.Section of Biochemistry, Molecular and Cell BiologyCornell UniversityIthacaUSA
  2. 2.CHESSCornell UniversityIthacaUSA

Personalised recommendations