Advertisement

Multiwavelength Anomalous Diffraction as a Direct Phasing Vehicle in Macromolecular Crystallography

  • Wayne A. Hendrickson
  • John R. Horton
  • H. M. Krishna Murthy
  • Arno Pahler
  • Janet L. Smith
Part of the Basic Life Sciences book series (BLSC, volume 51)

Abstract

The possibility for definitive phase determination from diffraction measurements made at multiple wavelengths from crystals that contain anomalous scatterers has long been recognized (Okaya and Pepinsky, 1956). This potential is easy to appreciate since multiwavelength anomalous diffraction (MAD) experiments can be thought of as in situ multiple isomorphous replacements (MIR) arising from the variations in scattering factors that accompany changes of wavelengths. These variations, known as anomalous scattering, result from the resonance that occurs between the oscillations of atomic orbitals and x-ray-induced electronic vibrations. With synchrotron radiation such experiments are now quite feasible, and with recently developed methods for analyzing MAD measurements, accurate phases can be obtained for macromolecular crystal structures. Anomalous scattering centers appropriate for MAD experiments can be introduced as for conventional heavy atom derivatives or they may occur naturally in metalloproteins. In addition, selenomethionyl proteins produced biologically are suitable for MAD phasing. Since a single crystalline species (and often a single crystal) suffices for MAD analysis of such molecules, the MAD method serves as a vehicle for direct structure determination.

Keywords

Crystal Structure Analysis Anomalous Signal Anomalous Scattering Photon Factory Macromolecular Crystallography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adman, E. T., Sieker, L. C., and Jensen, L. H., 1973, The structure of a bacterial ferredoxin, J. Biol. Chem., 248: 3987.Google Scholar
  2. Cowie, D. B., and Cohen, G. N., 1957, Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur, Biochem. Biophys. Acta, 26: 252–261.CrossRefGoogle Scholar
  3. Harada, S., Yasui, M., Murakawa, K., Kasai, N., and Satow, Y., 1986, Crystal structure analysis of cytochrome c’ by the multiwavelength anomalous diffraction method using synchrotron radiation. J. Appl. Cryst. 19: 448.CrossRefGoogle Scholar
  4. Hendrickson, W. A., 1985, Analysis of protein structure from diffraction measurements at multiple wavelengths. Trans. Amer. Cryst. Assn. 21: 11–21.Google Scholar
  5. Hendrickson, W. A., 1987, Anomalous scattering in macromolecular structure analysis, in: “Crystallography in Molecular Biology,” D. Moras, J. Drenth, B. Strandberg, D. Suck and K. Wilson, eds., Plenum Press, New York.Google Scholar
  6. Hendrickson, W. A., and Teeter, M. M., 1981, Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur, Nature, 290: 107.CrossRefGoogle Scholar
  7. Hendrickson, W. A., Love, W. E., and Karle, J., 1973, Crystal structure analysis of sea lamprey hemoglobin at 2A resolution, J Mol. Biol. 74: 331.CrossRefGoogle Scholar
  8. Holmgren, A., Soderberg, B.-0., Eklund, H., and Branden, C.-I., 1975, Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 Angstroms resolution, Proc. Natl. Acad. Sci., USA 72: 2305.Google Scholar
  9. Honzatko, R. B., Hendrickson, W. A., and Love, W. E., 1985, Refinement of a molecular model for lamprey hemoglobin from Petromyzon marinus, J. Mol. Biol., 184: 147.CrossRefGoogle Scholar
  10. Kahn, R., Fourme, R., Bosshard, R. Chaimdi, M., Risler, J. L., Dideberg, O., and Wery, J. P., 1985, Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction, FEBS Lett. 179: 133.CrossRefGoogle Scholar
  11. Karle, J., 1980, Some developments in anomalous dispersion for the structure investigation of macromolecular systems in biology, Int. J. Quant. Chem., 7: 357.Google Scholar
  12. Korzun, Z. R, 1987, The tertiary structure of azurin from Pseudomonas denitrificans as determined by Cu resonant diffraction using synchrotron radiation, J. Mol. Biol., 196: 413.CrossRefGoogle Scholar
  13. Le Master, D. M., and Richards, F. M., 1985, 1H–15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotropically labelled by residue type, Biochemistry, 24: 7263.Google Scholar
  14. Okaya, Y., and Pepkinsky, R., 1956, New formulation and solution of the phase problem in x-ray analysis of noncentric crystals containing anomalous scatterers, Phys. Review, 103: 1645.MATHCrossRefGoogle Scholar
  15. Pahler, A., Hendrickson, W. A., Gawinowicz-Kolks, M. A., Argarana, C. E.., and Cantor C. R., 1987, Characterization and crystallization of core streptavidin, J. Biol. Chem. 262: 13933.Google Scholar
  16. Phizackerley, R. P, Cork, C. W., and Merritt, E. A., 1986, An area detector data acquisition system for protein crystallography using multiple-energy anomalous dispersion techniques, Nucl. Instr. and Meth., A246: 579.CrossRefGoogle Scholar
  17. Satow, Y., 1984, Photon factory data collection systems for x-ray crystallography using synchrotron radiation, in: “Methods and Applications in Crystallographic Computing,” S. R. Hall and T. Ashida, eds. Oxford Univ. Press, Oxford.Google Scholar
  18. Templeton, D. H., and Templeton, L. K., 1985, Tensor x-ray optical properties of the bromate ion, Acta Cryst., A41: 133.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Wayne A. Hendrickson
    • 1
  • John R. Horton
    • 1
  • H. M. Krishna Murthy
    • 1
  • Arno Pahler
    • 1
  • Janet L. Smith
    • 1
  1. 1.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations