Sagittal Focusing Optics

  • J.-L. Staudenmann
  • W. A. Hendrickson
Part of the Basic Life Sciences book series (BLSC, volume 51)

Abstract

Ideally, one would like to determine any structure with only one crystal in a “reasonable” time With present-day detecting, electronic and flux technologies applied to biological substances, this implies neutron diffraction, because the electric field carried by the particle is too weak to cause any damage to the bonding (Hanson and Schoenborn, 1981). The drawbacks with this radiation are mainly twofold: (i) low flux and compounding, and (ii) due to low scattering cross sections, large crystals are required whose qualities may not be as high as small ones (defects and inhomogeneities related to compositional changes within the same crystal).

Keywords

Carbide Mora 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya, Y., Matsushita, T., Nakagawa, A., Satow, Y., Miyahara, J., and Chikawa, J.-I., 1988, Design and performance of an imaging plate system for x-ray diffraction study, Nucl. Instr. and Meth., A266: 645.CrossRefGoogle Scholar
  2. Bilderback, D., Moffat, K., Owen, J. F., Rubin, B. H., Schildkamp, W., Szebenyi, D., Smith Temple, B., Volz, K., and Whiting, B. R., 1988, Protein crystallographic data acquisition and preliminary analysis using Kodak storage phosphor plate, Nucl. Instr. and Meth., A266: 636.CrossRefGoogle Scholar
  3. Bonse, U., and Hart, M., 1965, Tailless x-ray single-crystal reflection curves obtained by multiple reflection, Appl. Phys. Lett., 7: 238.CrossRefGoogle Scholar
  4. Biosafety in Microbiological and Biomedical Laboratories, 1984, “HHS Publication No. (CDC) 84–8395, U.S. Department of Health and Human Services, Public Health Service Centers for Disease Control and National Institutes of Health, U.S. Government Printing Office, Washington, D.C.Google Scholar
  5. Deslattes, R. D., 1980, Primary monochromators using crystal diffraction, Nucl. Instr. and Meth., 177: 147.CrossRefGoogle Scholar
  6. Dorset and Baber, 1983, Webster’s New Universal Unabridged Dictionary.Google Scholar
  7. DuMond, J. W. M., 1937, Theory of the use of more than two successive x-ray crystal reflections to obtain increasing resolving power, Phys. Rev., 52: 872.CrossRefGoogle Scholar
  8. Freund, A., These proceedings.Google Scholar
  9. Guss, J. M., Merritt, E. A., Phizackerley, R. P., Hedman, B., Murata, M., Hodgson, K. O., and Freeman, H. C., 1988, Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic “blue” copper protein from cucumbers, Science, 241: 806.CrossRefGoogle Scholar
  10. Hanson, J., and Schoenborn, B. P., 1981, Real space refinement of neutron diffraction data from sperm whale carbonmonoxymyoglobin, J. Mol. Biol., 153: 117.CrossRefGoogle Scholar
  11. Hart, M., Rodrigues, A. R. D., and Siddons, D. P., 1984, Adjustable resolution bragg reflection systems, Acta Cryst., A40: 502.CrossRefGoogle Scholar
  12. Helliwell, J. R., Papiz, M. Z., Glover, I. D., Habash, J., Thompson, A. W., Moore, P. R., Harris, N., Croft, D., and Pantos, E., 1986, The wiggler protein crystallography workstation at the Daresbury SRS: progress and results, Nucl. Instr. and Meth., A246: 617.CrossRefGoogle Scholar
  13. Hendrickson, W. A., These proceedings.Google Scholar
  14. Hendrickson, W. A., Anomalous scattering in macromolecular structure analysis, in: “Crystallography in Molecular Biology,” Moras, D., Drenth, J., Strandlberg, B., Suck, D., and Wilson, K., eds., Plenum Publ. Corp., New York.Google Scholar
  15. Hendrickson, W. A., Smith, J. L., Phizackerly, R. P., and Merritt, E. A., 1988, Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation, Proteins, 4: 77.CrossRefGoogle Scholar
  16. Hendrickson, W. A., and Teeter, M. M., 1981, Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulfur, Nature, 290: 107.CrossRefGoogle Scholar
  17. Hontzatko, R., Hendrickson, W. A., and Love, W., 1985, Refinement of lamprey hemoglobin at 2.OA resolution, J. Mol. Biol., 184: 147.CrossRefGoogle Scholar
  18. Ice, G. E., and Sparks, C. J., Jr., 1984, Focusing optics for a synchrotron x-radiation microprobe, Nucl. Instr. and Meth. 222: 121.CrossRefGoogle Scholar
  19. Lemonnier, M., Fourme, R., Rousseaux, F., and Kahn, R., 1978, X-ray curved-crystal monochromator system at the storage ring DCI, Nucl. Instr. and Methods, 152: 173.CrossRefGoogle Scholar
  20. Matsushita, T., 1987, personal communication.Google Scholar
  21. Matsushita, T., Ishikawa, T., and Oyanagi, H., 1986, Sagitally focusing double-crystal monochromator with constant exit beam height at the photon factory, Nucl. Instr. and Methods, A246: 377.CrossRefGoogle Scholar
  22. Mills, D. M., Henderson, C., and Batterman, B. W., 1986, A fixed exit sagittal focusing monochromator utilizing bent single crystals, Nucl. Instr. and Meth., A246: 356.CrossRefGoogle Scholar
  23. Miyahara, J., Takahashi, K., Amemiya, Y., Kamiya, N., and Satow, Y., 1986, A new type of x-ray area detector utilizing laser stimulated luminescence, Nucl. Instr. and Meth., A246: 572.CrossRefGoogle Scholar
  24. Moffat, K., Bilderback, D., Schildkamp, W., and Volz, K., 1986, Laue diffraction from biological samples, Nucl. Instr. and Meth., A246:627. Oxford English Dictionary, 1979, Oxford University Press.Google Scholar
  25. Robert, P., 1970, Le Petit Robert, Societe du Nouvean Littre.Google Scholar
  26. Schildkamp, W., 1988, Design of a tunable and focusing single crystal monochromator for powerful x-ray sources, Nucl. Instr. and Meth., A266: 479.CrossRefGoogle Scholar
  27. Schoenborn, B. P., 1975, Phasing of neutron protein data by anomalous dispersion, in: “Anomalous Scattering,” S. Ramaseshan and S. C. Abrahams, eds., Published for International Union of Crystallography by Munksgaard, Copenhagen.Google Scholar
  28. Sherriff, S., and Hendrickson, W. A., 1987, Location of iron and sulfur atoms in myohemerythrin from anomalous scattering measurements, Acta Cryst., B43: 209.CrossRefGoogle Scholar
  29. Sparks, C. J., Jr., Borie, B. S., and Hastings, J. B., 1980, X-ray monochromator geometry for focusing synchrotron radiation above 10 keV, Nucl. Instr. and Meth., 172: 237.CrossRefGoogle Scholar
  30. Sparks, C. J., Jr., Ice, G. E., Wong, J., and Batterman, B. W., 1982, Sagittal focusing of synchrotron x-radiation with curved crystals, Nucl. Instr. and Meth., 195: 73.CrossRefGoogle Scholar
  31. Takacs, P. Z., These proceedings.Google Scholar
  32. Takacs, P. Z., Hursman, T. L., and Williams, J. T., 1984, Application of silicon carbide to synchrotron radiation mirrors, Nucl. Instr. and Meth., 222: 133.CrossRefGoogle Scholar
  33. Whiting, B. R., Owen, J. F., and Rubin, B. H., 1988, Storage phosphor x-ray diffraction detectors, Nucl. Instr. and Meth., A266: 628.CrossRefGoogle Scholar
  34. Yu, L. H., Galayda, J., and Ma, L., 1988, A preliminary study of the intensity dependence of the split ion chamber beam position monitor, Brookhaven National Laboratory, BNL-41673.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J.-L. Staudenmann
    • 2
    • 1
  • W. A. Hendrickson
    • 3
  1. 1.National Synchrotron Light Source, Brookhaven National LaboratoryHoward Hughes Medical InstituteUptonUSA
  2. 2.Department of Electrical EngineeringColumbia UniversityNew YorkUSA
  3. 3.Howard Hughes Medical Institute, Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations