X-Ray Optics for Synchrotron Radiation

  • Andreas K. Freund
Part of the Basic Life Sciences book series (BLSC, volume 51)


There has been dramatic recent progress in development of dedicated synchrotron radiation sources that have low emittance and high brightness. This calls for equivalent progress in development of beamlíne instrumentation, in particular, of optical elements. Trying to adapt conventional X-ray optics to the severe conditions required by present-day synchrotron sources solely by improving the quality of the optical devices is a first step, which is not sufficient. Totally new designs of beam-defining devices are necessary, which take into account the specific properties of the radiation: the small size of the source and beam divergence, linear or circular polarization, the wide spectral range, and the high power of beams emitted by the various source-defining devices of modern storage rings.


Synchrotron Radiation Perfect Crystal Beam Divergence Crystal Monochromator Liquid Gallium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arístov, V. V., Nikulín, A. Y., Snigirev, A. A., and Zaumseil, P., 1986, Experimental investigation of X-ray Bragg diffraction on the periodic surface relief of a perfect crystal, Phys. Stat. Sol., (a) 95: 81.CrossRefGoogle Scholar
  2. Arístov, V. V., Gaponov, S. V., Salashchenko, N. N., and Erko, A. I., 1986, Profiled multilayer mirrors for X-ray imaging and spectroscopy, Optics News, (b) 12: 128.Google Scholar
  3. Arístov, V. V., Basov, Y. A., Redkín, S. V., Snígirev, A. A., and Yunkin, V. A., 1987, Bragg zone plates for hard X-ray focusing, Nucl. Instr. and Meth., A261: 72.CrossRefGoogle Scholar
  4. Arístov, V. V., Erko, A. I., and Martinov, V. V., 1988, Principles of Bragg-Fresnel multílayer optics, Rev. Phys. Appl., 23: 1623.CrossRefGoogle Scholar
  5. Barbee, T. W., Jr., 1986, Multílayers for X-ray optics, Opt. Eng., 25: 989.Google Scholar
  6. Barbee, T. W., Jr., 1988, Combined microstructure X-ray optics; multílayer diffraction gratings, in: “Multilayers: Synthesis, Properties and Non-Electronic Applications,” Materials Research Society Symposium Proceedings, T. W. Barbee, Jr., F. Spaepen and L. Greer, eds., Materials Research Society Symposium Proceedings, Pittsburgh.Google Scholar
  7. Barbee, T. W., Jr., Spaepen, F., and Greer, L., 1988, eds., “Multilayers: Synthesis, Properties and Non-Electronics Applications,” Materials Research Society Symposium Proceedings 103, Pittsburgh.Google Scholar
  8. Batterman, B. W., and Cole, H., 1964, Dynamical diffraction of X-rays by perfect crystals, Rev. Mod. Phys., 36: 681.MathSciNetCrossRefGoogle Scholar
  9. Bilderback, D. H., 1986, The potential of cryogenic silicon and germanium X-ray monochromators for the use with large synchrotron heat load, Nucl.Instr. and Meth., A246: 434.CrossRefGoogle Scholar
  10. Bilderback, D. H., Lairson, B. M., Barbee, T. W., Jr., Ice, G. E, and Sparks, C. J., 1983, Design of doubly focusing, tunable (5–30 keV),wide bandpass optics made from layered synthetic microstructures, Nucl. Instr. and Meth., 208: 251.CrossRefGoogle Scholar
  11. Bílderback, D. H., Henderson, C., White, J., Smither, R. K., and Forster, G. A., 1989, Undulator heat loading studies on X-ray monochromators cooled with liquid gallium,Proc. Synchr. Rad. Conf. 1988, Tsukuba, Rev. Sci. Instr., (in press).Google Scholar
  12. Bonse, U., 1986, X-ray optics, in: “Proc. Int. School of Crystallography,” Section D1, Erice.Google Scholar
  13. Bonse, U., and Hart, M., 1965, Tailless X-ray single-crystal reflection curves obtained by multiple reflection, Appl. Phys. Lett., 7: 238.CrossRefGoogle Scholar
  14. Born, M., and Wolf, E., 1964, “Principles of Optics,” Pergamon Press, London.Google Scholar
  15. Burkel, E., Peísl, J., and Dorner, B., 1987, Observation of inelastic X-ray scattering from phonons, Europhys. Lett., 3: 957.CrossRefGoogle Scholar
  16. Caciuffo, R., Melone, S., Rustichellí, F., and Boeuf, A., 1987, Mono-chromators for X-ray synchrotron radiation, Phys. Rep., 152: 1.CrossRefGoogle Scholar
  17. Christensen, F. E., Hornstrup, A., and Schnopper, H. W., 1988, Surface correlation function analysis of high resolution scattering data from mirrored surfaces obtained using a triple-axis X-ray díffractometer, Appl. Optics, 27: 1548.CrossRefGoogle Scholar
  18. Church, E. L., 1988, Fractal surface finish, Appl. Optics, 27: 1518.CrossRefGoogle Scholar
  19. Compton, A. H., and Allison, S. K., 1963, “X-Rays in Theory and Experiment,” Van Nostrand, Princeton.Google Scholar
  20. Deutsch, M., 1980, The asymmetrically cut Bonse-Hart camera, J. Appl. Cryst., 13: 252.MathSciNetCrossRefGoogle Scholar
  21. Dhez, P., 1989, Multilayered mirrors for high brightness X-ray sources, Proc. SR 88 Meeting, Novosibirsk (1988), Nucl. Instr. and Meth., (in press).Google Scholar
  22. Di Gennaro, R., Gee, B., Guigli, J., Hogrefe, H., Howells, M., and Rarback, H., 1988, A water-cooled mirror system for synchrotron radiation, Nucl. Instr. and Meth., A266: 498.CrossRefGoogle Scholar
  23. Dorner, B., Burkel, E., and Peisl, J., 1986, An X-ray backscattering instrument with very high energy resolution, Nucl. Instr. and Meth., A246: 450.CrossRefGoogle Scholar
  24. Edwards, W. R., Hoyer, E. H., and Thompson, A. C., 1985, Finite element analysis of the distortion of a crystal monochromator from synchrotron radiation thermal loading, SPIE Proceedings, 582: 281.CrossRefGoogle Scholar
  25. Elleaume, P., 1988, Design considerations for the insertion devices and beamline frontends of the ESRF, Nucl. Instr. and Meth., A266: 125.CrossRefGoogle Scholar
  26. Freund, A. K., 1983, On the use of focusing for small-angle scattering experiments, Nucl. Instr. and Meth. 216: 269.CrossRefGoogle Scholar
  27. Freund, A. K., 1987, “X-Ray Optics,” part 1, ESRF Report, Grenoble.Google Scholar
  28. Freund, A. K., 1988, Mosaic crystal monochromators for synchrotron radiation instrumentation, Nucl. Instr. and Meth., A266: 461.CrossRefGoogle Scholar
  29. Fukamachi, T., Nakano, Y., and Kawamura, T., 1986, Energy dependence of X-ray reflectivity from multilayer mirrors, in: “X-Ray Instrumentation for the Photon Factory,” S. Hosoya, Y. Iitaka and H. Hashizume, eds., KTK Scientific Publishers, Tokyo.Google Scholar
  30. Graeff, W., 1987, Communication at the Workshop “X-Ray Optics for the ESRF,” Grenoble, unpublished.Google Scholar
  31. Gronkowski, J., and Malgrange, C., 1984, Propagation of X-ray beams in distorted crystals (Bragg case), Acta Cryst., A40: 507.Google Scholar
  32. Hart, M., 1978, X-ray polarization phenomena, Phil. Mag., B38: 41.CrossRefGoogle Scholar
  33. Hart, M., and Rodrigues, A. R. D., 1978, Harmonic-free single-crystal monochromators for neutrons and X-rays, J. Appl. Cryst., 11: 248.CrossRefGoogle Scholar
  34. Hart, M., and Rodrigues, A. R. D., 1979„ Tuneable polarizers for X-rays and neutrons, Phil. Mag., B40: 149.Google Scholar
  35. Hart, M., Rodrigues, A. R. D., and Siddons, D. P., 1984, Adjustable resolution Bragg reflection systems, Acta Cryst., A40: 502.CrossRefGoogle Scholar
  36. Hastings, J. B., 1977, X-ray optics and monochromators for synchrotron radiation, J. Appl. Phys., 48: 1576.CrossRefGoogle Scholar
  37. Hastings, J. B., Suortti, P., Thomlinson, W., Kvick, A., and Koetzle, T. F., 1983, Optical design of the NSLS crystallography beamline, Nucl. Instr. and Meth. 208: 55.CrossRefGoogle Scholar
  38. Heald, S., 1988, A versatile two/four crystal monochromator for X-ray absorption spectroscopy, Nucl. Instr. and Meth., A266: 457.CrossRefGoogle Scholar
  39. Henke, B. L., 1972, Ultrasoft X-ray reflection, refraction and production of photoelectrons (100–1000 eV region), Phys. Rev., A6: 94.CrossRefGoogle Scholar
  40. Hohlwein, D., Siddons, D. P., and Hastings, J. B.,1988, A graphite double crystal monochromator for X-ray synchrotron radiation, J. Appl. Cryst., (in press).Google Scholar
  41. Hornstrup, A., Christensen, F. E., Wood, J. L., Bending, M., and Schnopper, H. W., 1988, Measurements of X-ray surface scattering and the diffraction properties of selected multilayers, SPIE Proceedings, 984: 174.CrossRefGoogle Scholar
  42. James, R. W., 1963, The dynamical theory of X-ray diffraction, in: “Solid State Physics,” Vol. 15. Academic Press, New York.Google Scholar
  43. Jark, W., 1986, Enhancement of diffraction grating efficiencies in the soft X-ray region by a multilayer coating, Opt. Comm., 60: 201.CrossRefGoogle Scholar
  44. Kohra, K., Ando, M., Matsushita, T., and Hashizume, H., 1978, Design of high resolution X-ray optical system using dynamical diffraction for synchrotron radiation, Nucl. Instr. and Meth., 152: 161.CrossRefGoogle Scholar
  45. Lai, B., Chapman, K., and Cerrína, F., 1988, Shadow: new developments, Nucl. Instr. and Meth., A266: 544.CrossRefGoogle Scholar
  46. Lairson, B. M., and Bilderback, D. H., 1982, Transmission X-ray mirror - a new optical element, Nucl. Instr. and Meth., 195: 79.CrossRefGoogle Scholar
  47. Lemaire, A. D., Wijsman, A., and van Zuylen, P., 1988, Cooling of silicon crystals for X-ray monochromators, Report 832. 020 TNO Institute of Applied Physics, Delft.Google Scholar
  48. Marshall, G. F., 1986, Monochromatization by multilayered optics on a cylindrical reflector and on an ellipsoidal focusing ring, Opt. Eng., 25: 922.Google Scholar
  49. Materlik, G., and Kostroun, V. O., 1980, Monolithic crystal monochromators for synchrotron radiation with order sorting and polarizing properties, Rev. Sci. Instr., 51: 86.CrossRefGoogle Scholar
  50. Matsushita, T., and Hashizume, H., 1983, X-ray monochromators, in: “Handbook on Synchrotron Radiation,” E. E. Koch, ed., Vol. 1, E. E., North-Holland, Amsterdam.Google Scholar
  51. Matsushita, T., and Kaminaga, U., 1980, A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation I and II, J. Appl. Cryst., 13: 465.CrossRefGoogle Scholar
  52. Matsushita, T., Ishikawa, T., and Kohra, K., 1984, High resolution measurement of angle-resolved X-ray scattering from optically flat mirrors, J. Appl. Cryst., 17: 257.CrossRefGoogle Scholar
  53. Mills, D. M., 1988, Phase-plate performance for the production of circularly polarized X-rays, Nucl. Instr. and Meth., A266: 531.CrossRefGoogle Scholar
  54. Mourikis, S., Koch, E. E., and Saile, V., 1989, Surface temperature and distortion of optical elements exposed to high power synchrotron radiation beams, Proc. SRI 1988 Conf., Tsukuba, Rev. Sci. Instr., (in press).Google Scholar
  55. Nevot, L., and Croce, P., 1980, Caracterisation des surfaces par reflexion rasante de rayons X. Application a l’etude du polissage de quelques verres silicates, Rev. Phys. Appl., 15: 761.CrossRefGoogle Scholar
  56. Parratt, L. G., 1954, Surface studies of solids by total reflection of X-rays, Phys. Rev., 95: 359.CrossRefGoogle Scholar
  57. Pianetta, P., Redaelli, R., and Barbee, T. W., Jr., 1985, Performance of layered synthetic microstructures in monochromator applications in the soft X-ray region, SPIE Proceedings, 563: 393.CrossRefGoogle Scholar
  58. Rosen, D. L., Brown, D., Gilfrich, J., and Burkhalter, P., 1988, Multilayer roughness evaluated by X-ray reflectivity, J. Appl. Cryst. 21: 136.CrossRefGoogle Scholar
  59. Rosenbaum, G., and Holmes, K. C., 1980, Small-angle diffraction of X-rays and the study of biological structures, in: “Synchrotron Radiation Research,” H. Winick and S. Doniach, eds., Plenum, New York.Google Scholar
  60. Saile, V., 1988, “Communication at the Workshop on Thermal Problems of Intense Synchrotron Radiation Beams,” ESRF, Grenoble, unpublished.Google Scholar
  61. Sato, S., Yanagihara, M., Iijima, A., Takeda, S., Koide, T., and Maezawa, H., 1989, SIC mirror development at the photon factory, Proc. SRI 1988 Conference, Tsukuba, Rev. Sci. Instr., (in press).Google Scholar
  62. Schneider, J. R., 1988, The applications of y-ray diffractometry to the study of condensed matter and perspectives for the use of short wavelength synchrotron radiation, in: “Proceedings of the Workshop on Applications of High Energy X-Ray Scattering,” A. Freund, ed., ESRF, Grenoble.Google Scholar
  63. Schneider, J. R., Nagasawa, H., Berman, L. E., Hastings, J. B., Siddons, D. P., and Zulehner, W., 1989, Test of annealed Czochralski grown silicon crystals as X-ray diffraction elements with 145 deV synchrotron radiation, Nucl. Instr. and Meth., (in press).Google Scholar
  64. Schulke, W., 1986, Inelastic X-ray scattering with synchrotron radiation: the scientific case, current experiments and projects, Nucl. Instr and Meth., A246: 491.CrossRefGoogle Scholar
  65. Siddons, D. P., Hastings, J. B., and Faigel, G., 1987, A new apparatus for the study of nuclear Bragg scattering, Nucl. Instr. and Meth., A266: 329.Google Scholar
  66. Sinha, S. K., Sirota, E. B., Garoff, S., and Stanley, H. B., 1988, X-ray and neutron scattering from rough surfaces, Phys. Rev., B38: 2297.CrossRefGoogle Scholar
  67. Smither, R. K., Forster, G. A., Kot, C. A., and Kuzay, T. M., 1988, Liquid gallium metal cooling for optical elements with high heat loads, Nucl. Instr. and Meth. A266: 517.CrossRefGoogle Scholar
  68. Smither, R. K., Forster, G. A., Bilderback, D., Bedzyk, M., Finkelstein, F., Henderson, C., White, J., Berman, L., Stefan, P., and Oversluizen, T., 1989, Liquid gallium cooling of silicon crystals in high intensity photon beams, Proc. SRI 1988 Conf., Tsukuba, Rev. Sci. Instr., (in press).Google Scholar
  69. Sparks, C. J., Jr., Borie, B. S., and Hastings, J. B., 1980, X-ray monochromator geometry for focusing synchrotron radiation above 10 keV, Nucl. Instr. and Meth., 172: 237.CrossRefGoogle Scholar
  70. Sparks, C. J., Jr., Ice, G. E., Wong, J., and Batterman, B. W., 1982, Sagittal focusing of synchrotron radiation with curved crystals, Nucl. Instr. and Meth., 194: 73.Google Scholar
  71. Spiller, E., 1988, Characterization of multilayered coatings by X-ray reflection, Rev. Phys. Appl., 23: 1687.CrossRefGoogle Scholar
  72. Suortti, P., 1987, Communication at the Workshop, “X-Ray Optics for the ESRF,” Grenoble, unpublished.Google Scholar
  73. Suortti, P., and Freund, A.K., 1989, On the phase space description of synchrotron X-ray beams, Proc. SRI 1988 Conf., Tsukuba, Rev. Sci. Instr., (in press).Google Scholar
  74. Suortti, P., and Thomlinson, W., 1988, A bent Laue crystal monochromator for angiography at the NSLS, Nucl. Instr. and Meth., A269: 639.Google Scholar
  75. Takacs, P. Z., 1986, Metrology of reflection optics for synchrotron radiation, Nucl. Instr. and Meth., A246: 227.MathSciNetCrossRefGoogle Scholar
  76. Takacs, P. Z., 1988, these proceedings.Google Scholar
  77. Takacs, P. Z., Hursman, T. L., and Williams, J. T., 1984, Application of silicon carbide to synchrotron radiation mirrors, Nucl. Instr. and Meth., 222: 133.CrossRefGoogle Scholar
  78. Takagi, S., 1962, Dynamical theory of diffraction applicable to crystals with any kind of small distortion, Acta Cryst., 15: 1311.CrossRefGoogle Scholar
  79. Takagi, S., 1969, A dynamical theory of diffraction of a distorted crystal, J. Phys. Soc. Jpn., 16: 1239.CrossRefGoogle Scholar
  80. Taupin, D., 1967, Prevision de quelques images de dislocations par transmission des rayons X (cas de Laue symetrique), Acta Cryst., 23: 25.CrossRefGoogle Scholar
  81. Tirsell, K., Berglín, E. J., Fuchs, B. A., Holdener, F. R., Humpal, H. H., Karpenko, V. P., and Kulkarni, S., 1988, Highly polished, grazing incidence mirrors developed for synchrotron radiation beamlines at Stanford Synchrotron Radiation Laboratory, Opt. Engin., 27: 985.CrossRefGoogle Scholar
  82. Tolentino, H., Dartyge, E., Fontaine, A., and Tourillon, G., 1988, X-ray absorption spectroscopy in the dispersive mode with synchrotron radiation: optical considerations, J. Appl. Cryst., 21: 15.CrossRefGoogle Scholar
  83. Trela, W. J., Bartlett, R. J., Michaud, F. D., and Alkire, R., 1988, An X-ray beamlíne for the energy range 5–20 keV, Nucl. Instr. and Meth., A266: 234.CrossRefGoogle Scholar
  84. Underwood, J. H., Thompson, A. C., Wu, Y., and Giauque, R. D., 1988, X-ray microprobe using multílayer mirrors, Nucl. Instr. and Meth., A266: 296.CrossRefGoogle Scholar
  85. Vidal, B., and Vincent, P., 1984, Metallic multilayers for X-rays using classical thinfílm theory, Appl. Optics, 23: 1794.CrossRefGoogle Scholar
  86. Witz, J., 1969, Focusing monochromators, Acta Cryst., A25: 30.Google Scholar
  87. Youngman, B. P., 1988, History of thermal/stress analysis methods used at the Stanford Synchrotron Radiation Laboratory, Nucl. Instr. and Meth., A266: 525.CrossRefGoogle Scholar
  88. Zachariasen, W. H., 1945, “Theory of X-Ray Diffraction in Crystals,” Dover, New York.Google Scholar
  89. Ziegler, E., Lepetre, Y., Joksch, St, Salle, V., Mourikís, S., Víccaro, P. J., Rolland, G., and Laugier, F., 1989, Performance of multilayers in intense synchrotron X-rays beams, Proc. SRI 1988 Conf., Tsukuba, Rev. Sci. Instr., (in press).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Andreas K. Freund
    • 1
  1. 1.European Synchrotron Radiation FacilityGrenoble CedexFrance

Personalised recommendations