Time-Resolved Fluorescence in Studies of Protein Structure and Dynamics

  • William R. Laws
  • David M. Jameson
Part of the Basic Life Sciences book series (BLSC, volume 51)


Fluorescence spectroscopy continues to develop as a useful technique for understanding the complex relationships between structure and function of proteins and other biological macromolecules. Fluorescence spectroscopy has several advantages, including sensitivity (only a small amount of sample is needed), the ability to examine processes over a wide time range (picoseconds to seconds), the ability to work under “physiological” conditions, and the ability to measure many different physical parameters (quantum yield, lifetime, emission energies, anisotropy) that can contribute to the understanding of the system.


Synchrotron Radiation Tryptophan Residue Intensity Decay Fluorescence Decay Curve Anisotropy Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpert, B., and Lopez-Delgado, R., 1976, Fluorescence lifetimes of haem proteins excited into the tryptophan absorption band with synchrotron radiation, Nature, 263:445.CrossRefGoogle Scholar
  2. Alpert, B., Jameson, D. M., Lopez-Delgado, R., and Schooley, R., 1979, Tryptophan fluorescence lifetimes as a function of excitation wavelength, Photochem. Photobiol., 30:479.CrossRefGoogle Scholar
  3. Antonangeli, F., Bassani, F., Campolungo, A., Finazzi-Agro, A., Grassano, U. M., Gratton, E., Jameson, D. M., Piacentini, M., Rosato, N., Savoia, A., Weber, G., and Zema, N., 1983, A multifrequency crosscorrelation phase fluorometer with picosecond resolution using synchrotron radiation, In: “Report LNF-83/68(R) of the Istituto Nazionale di Fisica Nucleare,” Laboratori Nazionali di Frascati.Google Scholar
  4. Badea, M. G., and Brand, L., 1979, Time-resolved fluorescence measurements, Methods Enzymol., 61:378.CrossRefGoogle Scholar
  5. Beechem, J. M., Knutson, J. R., Ross, J. B. A., Turner, B. W., and Brand, L., 1983, Global resolution of heterogeneous decay by phase/ modulation fluorometry: mixtures and proteins, Biochemistry, 22:6054.CrossRefGoogle Scholar
  6. Beechem, J. M., and Brand, L., 1985, Time-resolved fluorescence of proteins, Ann. Rev. Biochem., 54:43.CrossRefGoogle Scholar
  7. Gauduchon, P., and Wahl, P. H., 1978, Pulse fluorimetry of tyrosyl peptides, Biophys. Chem., 8:87.CrossRefGoogle Scholar
  8. Gratton, E., and Lopez-Delgado, R., 1980, Measuring fluorescence decay times by phase-shift and modulation techniques using the high harmonic content of pulsed light sources, Il Nuovo Cimento, 56B:110.Google Scholar
  9. Gratton, E. and Limkeman, M., 1983, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophysical J., 22:315.CrossRefGoogle Scholar
  10. Gratton, E., Jameson, D. M., and Hall, R. D., 1984a, Multifrequency phase and modulation fluorometry, Ann. Rev. Biophys. Bioeng., 13:105.CrossRefGoogle Scholar
  11. Gratton, E., Jameson, D. M., Rosato, N., and Weber, G., 1984b, Multifrequency cross-correlation phase fluorometer using synchrotron radiation, Rev. Sci. Instrum., 55:486.CrossRefGoogle Scholar
  12. Jameson, D. M., and Alpert, B., 1979, The use of synchrotron radiation in fluorescence studies on biochemical systems, In: “Synchrotron Radiation Applied to Biophysical and Biochemical Research,” A. Castellani and I. F. Quercia, eds., Plenum, New York.Google Scholar
  13. Jameson, D. M., Gratton, E., and Eccleston, J. F., 1987, Intrinsic fluorescence of elongation factor Tu in its complexes with GDP and elongation factor Ts, Biochemistry, 26:3894.CrossRefGoogle Scholar
  14. Knutson, J. R., Beechem, J. M., and Brand, L., 1983, Simultaneous analysis of multiple fluorescence decay curves: a global approach, Chem. Phys. Lett., 102:501.CrossRefGoogle Scholar
  15. Laws, W. R., and Sutherland, J. C., 1986, The time-resolved photon-counting fluorometer at the National Synchrotron Light Source, Photochem. Photobiol., 44:343.CrossRefGoogle Scholar
  16. Laws, W. R., Ross, J. B. A, Wyssbrod, H. R., Beechem, J. M., Brand, L., and Sutherland, J.C., 1986, Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogues: correlation of NMR-determined rotamer populations and fluorescence kinetics, Biochemistry, 25:599.CrossRefGoogle Scholar
  17. Merola, F., and Brochon, J. C., 1986, Polarised pulse fluorimetry study on the conformational properties of wheat germ hexokinase LI, Eur. Biophys. J., 13: 291.CrossRefGoogle Scholar
  18. Munro, I., Pecht, I., and Stryer, L., 1979, Subnanosecond motions of tyrptophan residues in proteins, Proc. Natl. Acad. Sci. USA, 76:56.CrossRefGoogle Scholar
  19. Munro, I. H., 1983, Synchrotron radiation as a source to study time-dependent phenomena, In: “Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology,” R. B. Cundall and R. E. Dale, eds., NATOASI Series A: Life Sciences, Vol. 69, Plenum, New York.Google Scholar
  20. Munro, I. H., and Schwentner, N., 1983, Time-resolved spectroscopy using synchrotron radiationNucl. Instrum. Methods, 208:819.CrossRefGoogle Scholar
  21. Munro, I. H., Shaw, D., Jones, G. R., and Martin, M. M., 1985, Time resolved fluorescence spectroscopy with synchrotron radiation, Anal. Instrum., 14:465.CrossRefGoogle Scholar
  22. Rigler, R., and Ehrenberg, M., 1973, Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy, Quat. Rev. Biophys., 6:139.CrossRefGoogle Scholar
  23. Rosato, N., Finazzi-Agro’, A., Gratton, E., Stefanini, S., and Chiancone, E., 1987, Time-resolved fluorescence of apoferritin and its subunits, J. Biol. Chem., 262:14487.Google Scholar
  24. Ross, J. B. A., Laws, W. R., Buku, A., Sutherland, J. C., and Wyssbrod, H. R., 1986a, Time-resolved fluorescence and 1H NMR studies of tyrosyl residues in oxytocin and small peptides: correlation of NMR-determined conformations of tyrosyl residues and fluorescence decay kinetics, Biochemistry, 25:607.CrossRefGoogle Scholar
  25. Ross, J. B. A., Laws, W. R., Sutherland, J. C., Buku, A., Katsoyannis, P. G., Schwartz, I. L., and Wyssbrod, H. R., 1986b, Linked-function analysis of fluorescence decay curve kinetics: resolution of side-chain rotamer populations of a single aromatic amino acid in small peptides, Photochem. Photobiol., 44:365.CrossRefGoogle Scholar
  26. Royer, C.A., Tauc, P., Herve, G., and Brochon, J.-C., 1987, Ligand binding and protein dynamics: a fluorescence depolarization study of aspartate transcarbamylase from Escherichia coli, Biochemistry, 26:6472.CrossRefGoogle Scholar
  27. Small, E. W., and Isenberg, I., 1977, Hydrodynamic properties of a rigid molecule: rotational and linear diffusion and fluorescence anisotropy, Biopolymers, 16:1907.CrossRefGoogle Scholar
  28. Spencer, R. D., and Weber, G., 1969, Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer, Ann. N. Y. Acad. Sci., 158:361.CrossRefGoogle Scholar
  29. Waldman, A. D. B., Clarke, A. R., Wigley, D. B., Hart, K. W., Chia, W. N., Barstow, D., Atkinson, T., Munro, I., and Holbrook, J. J., 1987, The use of site-directed mutagenesis and time-resolved fluorescence spectroscopy to assign the fluorescence contributions of individual tryptophan residues in Bacillus stearothermophilus lactate dehydrogenase, Biochim. Biophys. Acta, 913:66.CrossRefGoogle Scholar
  30. Weber, G., 1981, Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements, J. Phys. Chem., 85:949.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • William R. Laws
    • 1
  • David M. Jameson
    • 2
  1. 1.Department of BiochemistryMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations