Advertisement

Fluorescence Spectral Characteristics and Fluorescence Decay Profiles of Covalent Polycyclic Aromatic Carcinogen-DNA Adducts

  • Seog K. Kim
  • Nicholas E. Geacintov
  • David Zinger
  • John C. Sutherland
Part of the Basic Life Sciences book series (BLSC, volume 51)

Abstract

Many polycyclic aromatic hydrocarbons (PAH) are known to be mutagenic and carcinogenic. The relationships between structure, physico-chemical properties, and differences in biological activities of PAH compounds, have long been a source of fascination to chemists (Lehr et al., 1985; Harvey and Geacintov, 1988). In living cells, the sparingly soluble and relatively inert PAH molecules are metabolically converted to a variety of oxygenated derivatives (reviewed by Conney, 1982); results obtained in many different laboratories indicate that the ultimate mutagenic and tumorigenic forms of PAH compounds are diol epoxide derivatives.

Keywords

Polycyclic Aromatic Hydrocarbon Fluorescence Decay Linear Dichroism Polycyclic Aromatic Hydrocarbon Compound National Synchrotron Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brookes, P. and Osborne, M. R., 1982, Mutation in mammalian cells by stereoisomers of anti-benzo[a]pyrene-diol epoxide in relation to the extent and nature of the DNA reaction products, Carcinogenesis, 3: 1223.CrossRefGoogle Scholar
  2. Chen, F. M., 1986, Binding of enantiomers of trans-7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene to polynucleotides, J. Biomol. Struct. and Dynamics, 3: 401.CrossRefGoogle Scholar
  3. Conney, A. H., 1982, Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons, Cancer Res., 42: 4875.Google Scholar
  4. Eriksson, M., Norden, B., Jernstrom, B., and Graslund, A., 1988, Binding geometries of benzo[a]pyrene diol epoxide isomers covalently bound to DNA. Orientational distribution, Biochemistry (USA), 27: 1213.CrossRefGoogle Scholar
  5. Geacintov, N. E., Ibanez, V., Gagliano, A. G., Jacobs, S. A., and Harvey, R. G., 1984a, Stereoselective covalent binding of anti-benzo[a]pyrene diol epoxide to DNA. Conformation of enantiomer adducts, J. Biomol. Struct. Dynamics, 1: 1473.CrossRefGoogle Scholar
  6. Geacintov, N. E., Yoshida, H., Ibanez, V., Jacobs, S. A., and Harvey, R. G., 1984b, Conformations of adducts and kinetics of binding of the optically pure enantiomers of anti-benzo[a]pyrene diol epoxide, Biochem. Biophys. Res. Commun., 122: 33.CrossRefGoogle Scholar
  7. Geacintov, N. E., 1985, Mechanisms of interaction of polycyclic aromatic diol epoxides with DNA and structures of the adducts, In: “Polycyclic Hydrocarbons and Carcinogenesis,” R. G. Harvey, ed., ACS Symposium No. 83, The American Chemical Society, Washington, D.C.Google Scholar
  8. Geacintov, N. E., 1987, Principles and applications of fluorescence techniques in biophysical chemistry, Photochem. Photobiol., 45: 547.CrossRefGoogle Scholar
  9. Geacintov, N. E., Zinger, D., Ibanez, V., Santella, R., Grunberger, D., and Harvey, R. G., 1987, Properties of covalent benzo[a]pyrene diol epoxide-DNA adducts investigated by fluorescence techniques, Carcinogenesis, 8: 925.CrossRefGoogle Scholar
  10. Harvey, R. G. and Geacintov, N. E., 1988, Intercalation and binding of carcinogenic hydrocarbon metabolites to nucleic acids, Acc. Chem. Res., 21: 66.CrossRefGoogle Scholar
  11. Ivanovic, V., Geacintov, N. E., Yamasaki, H., and Weinstein, I. B., 1978, DNA and RNA adducts formed in hamster embryo cell cultures exposed to benzo[a]pyrene, Biochemistry (USA), 17: 1597.CrossRefGoogle Scholar
  12. Jernstrom, B., Lycksell, P. O., Graslund, A., and Norden, B., 1984, Spectroscopic studies of DNA complexes formed after reaction with anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide enantiomers of different carcinogenic potency, Carcinogenesis, 5: 1129.CrossRefGoogle Scholar
  13. Kolubayev, V., Brenner, H. C., and Geacintov, N. E., 1987, Stereoselective covalent binding of enantiomers of anti-benzo[a]pyrene diol epoxide to DNA as probed by optical detection of magnetic resonance, Biochemistry (USA), 26: 2638.CrossRefGoogle Scholar
  14. Laws, W. R. and Sutherland, J. C., 1986, The time-resolved photon counting fluorometer at the national synchrotron light source, Photochem. Photobiol., 44: 343.CrossRefGoogle Scholar
  15. LeBreton, P. R., 1985, The intercalation of benzo[a]pyrene and 7,2-dimethylbenz[a]anthracene metabolites and metabolite model compounds into DNA, In: “Polycyclic Hydrocarbons and Carcinogenesis,” R.G. Harvey, ed., ACS Symposium No. 283, The American Chemical Society, Washington, D.C.Google Scholar
  16. Lehr, R. E., Kumar, S., Levin, W., Wood, A. W., Chang, R. L., Conney, A. H., Yagi, H., Sayer, J. M., and Jerina, D. M., 1985, The bay region theory of polycyclic aromatic hydrocarbon carcinogenesis, In: “Polycyclic Hydrocarbons and Carcinogenesis,” R.G. Harvey, ed., ACS Symposium Series No. 283, The American Chemical Society, Washington.Google Scholar
  17. Roche, C. J., 1987, “The physical and covalent interactions of polycyclic aromatic hydrocarbon epoxide derivatives with nucleic acids,” Ph.D. dissertation, New York University.Google Scholar
  18. Undeman, O., Lycksell, P. O., Graslund, A., Astlind, T., Ehrenberg, A., Jernstrom, B., Tjerneld, F., and Norden, B., 1983, Covalent complexes of DNA and two stereoisomers of benzo[a]pyrene 7,8-dihydrodiol-9, 10-epoxide studied by fluorescence and linear dichroism, Cancer Res., 43: 1851.Google Scholar
  19. Vahakangas, K., Haugen, A., and Harris, C. C., 1985, An applied synchronous fluorescence spectrophotometric assay to study benzo[a]pyrene-diol epoxide - DNA adducts, Carcinogenesis, 6: 1109.CrossRefGoogle Scholar
  20. Van Houte, L. P. A., Bokma, J. T., Lutgerink, J. T., Westra, J. G., Retel, J., Van Grondelle, R., and Blok, J., 1987, An optical study of the conformation of the aminofluorene-DNA complex, Carcinogenesis, 8: 759.CrossRefGoogle Scholar
  21. Vigny, P. and Duquesne, M., 1979, Luminescence, a tool in hydrocarbon carcinogenesis, J. Luminescence, 18: 587.CrossRefGoogle Scholar
  22. Winnik, F. M., Winnik, M. A., Tazuke, S., and Ober, C. K., 1987, Synthesis and characterization of pyrene-labeled (hydroxypropyl) cellulose and its fluorescence in solution, Macromol., 20: 38.CrossRefGoogle Scholar
  23. Zinger, D., Geacintov, N. E., and Harvey, R. G., 1987, Conformations and selective photodissociation of benzo[a]pyrene diol epoxide enantiomer-DNA adducts, Biophys. Chem., 27: 131.CrossRefGoogle Scholar
  24. Zinger, D. and Geacintov, N. E., 1988, Acrylamide and molecular oxygen fluorescence quenching as a probe of solvent accessibility of aromatic fluorophores complexed with DNA in relation to their conformations: coronene-DNA and other complexes, Photochem. Photobiol., 47: 181.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Seog K. Kim
    • 1
  • Nicholas E. Geacintov
    • 1
  • David Zinger
    • 2
  • John C. Sutherland
    • 2
  1. 1.Chemistry DepartmentNew York UniversityNew YorkUSA
  2. 2.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations