X-Ray Absorption Spectroscopy of Pseudomonas Cepacia Phthalate Dioxygenase

  • James E. Penner-Hahn
Part of the Basic Life Sciences book series (BLSC, volume 51)


Bacterial degradation of aromatic compounds generally proceeds by a series of oxygenations. In Pseudomonas cepacia, the first step in phthalate metabolism is dihydroxylation to give phthalate 4,5-dihydrodiol. This reaction is catalyzed by a novel non-heme iron oxygenase. The phthalate dioxygenase from P. cepacia is a large (ca. 192,000 kDa) tetrameric protein containing one “Rieske-like” 2Fe/2S cluster and one mononuclear Fe site per monomer (Batie et al, 1987). We used x-ray absorption spectroscopy (XAS) to determine the structures of the metal sites in phthalate dioxygenase.


Stanford Synchrotron Radiation Laboratory Rieske Cluster Mononuclear Site Phthalate Dioxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonio, M. R., Averill, B. A., Moura, I., Moura, J. J. G., Orme-Johnson, W. H., Teo, B. K., and Xavier, A. V., 1982, Core dimensions in the 3Fe cluster of Desulfovibrio gigas ferredoxin II by extended x-ray absorption fine structure spectroscopy, J. Biol. Chem., 257: 6646.Google Scholar
  2. Axcell, B. C., and Geary, P. J., 1975, Purification and properties of a soluble benzene-oxidizing system from a strain of Pseudomonas, Biochem. J., 146: 173.Google Scholar
  3. Batie, C. J., LaHaie, E., and Ballou, D. P., 1987, Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia, J. Biol. Chem., 262: 1510.Google Scholar
  4. Beinert, H., 1973, Development of the field and the nomenclature, in “Iron-Sulfur Proteins,” Lovenberg, W., ed., Academic Press, New York.Google Scholar
  5. Cline, J. F., Hoffman, B. M., LaHaie, E., Ballou, D. P., and Fee, J. A., Evidence for nitrogen coordination to iron in the [2Fe-2S] clusters of Thermus Rieske protein and phthalate dioxygenase from Pseudomonas, 1985, J. Biol. Chem., 260: 3251.Google Scholar
  6. Fee, J. A., Findling, K. L., Yoshida, T., Hille, R., Tarr, G. E., Hearshen, D. O., Dunham, W. R., Day, E. P., Kent, T. A., and Munck, E., 1984, Purification and characterization of the Rieske iron-sulfur protein from Thermus thermophilus. Evidence for a [2Fe-2S] cluster having non-cysteine ligands, J. Biol. Chem., 259: 124.Google Scholar
  7. Feiters, M. C., Al-Hakim, M., Navaratnam, S., Allen, J. C., Veldink, G. A., and Vliegenthart, J. F. G., 1987, Extended X-ray absorption fine structure (EXAFS) study of iron in native soybean lipoxygenase-1, Recl. Tray. Chim. Pays-Bas, 106: 227.Google Scholar
  8. Geary, P. J., Saboowalla, F., Patil, D., and Cammack, R., 1984, An investigation of the iron-sulfur proteins of benzene dioxygenase from Pseudomonas putida by electron spin resonance spectroscopy, Biochem. J., 217: 667.Google Scholar
  9. Gibson, D. T., Hensley, M., Yoshioka, H., and Mabry, T. J., 1970, Oxidative degradation of aromatic hydrocarbons by microorganisms. III. Formation of (+)-cis-2,3-dihydroxy-l-methyl-4,6-cyclohexadiene from toluene by Pseudomonas putida, Biochemistry, 9: 1626.CrossRefGoogle Scholar
  10. Kuila, D., and Fee, J. A., 1986, Evidence for a redox-linked ionizable group associated with the 2-iron-2sulfur cluster of Thermus Rieske protein, J. Biol. Chem., 261: 2768.Google Scholar
  11. Nelson, N., and Neumann, J., 1972, Isolation of a cytochrome b6-f particle from chloroplasts, J. Biol. Chem., 247: 1817.Google Scholar
  12. Palmer, G., 1973, Current insights into the active center of spinach ferredoxin and other iron-sulfur proteins, in: “Iron-Sulfur Proteins,” Lovenberg, W., ed., Academic Press, New York.Google Scholar
  13. Penner-Hahn, J. E., Eble, K. S., McMurry, T. J., Renner, M., Balch, A. L., Groves, J. T., Dawson, J. H., and Hodgson, K. O., 1986, Structural Characterization of Horseradish Peroxidase Using EXAFS spectroscopy. Evidence for FeO litation in compounds I and II, J. Am. Chem. Soc., 108: 7819.CrossRefGoogle Scholar
  14. Rieske, J. S., Hansen, R. E., and Zaugg, W. S., 1964, Studies of the electron transfer system. LVIII. Properties of a new oxidation-reduction component of the respiratory chain as studied by electron paramagnetic resonance spectroscopy, J. Biol. Chem., 239: 3017.Google Scholar
  15. Roe, A. L., Hodgson, K. 0., Reem, R. C., Solomon, E. I., and Whittaker, J. W., 1985, SSRL Activity Report, X-ray absorption studies of oxygen:non-heme iron interactions, Proposal No. 932B.Google Scholar
  16. Roe, A. L., Scheider, D. J., Mayer, R. J., Pyrz, J. W., Widom, J., and Que, L. Jr., 1985, X-ray absorption spectroscopy of iron-tyrosinate proteins, J. Am. Chem. Soc., 106: 1676.CrossRefGoogle Scholar
  17. Sauber, K., Frohner, C., Rosenberg, G., Eberspacher, J., and Lingens, F., 1977, Purification and properties of pyrazon dioxygenase from pyrazon-degrading bacteria., Eur. J. Biochem., 74: 89.CrossRefGoogle Scholar
  18. Stout, C. D., 1982, Iron-sulfur protein crystallography, Met. Ions Biol., 4: 97Google Scholar
  19. Teo, B. K., and Lee, P. A., 1979, Ab initio calculations of amplitude and phase functions for extended x-ray absorption fine structure spectroscopy, J. Am. Chem. Soc., 101: 2815.CrossRefGoogle Scholar
  20. Teo, B. K., Shulman, R. G., Brown, G. S., and Meixner, A. E., 1979, EXZFS studies of proteins and model compounds containing dimeric and tetrameric ironsulfur clusters, J. Am. Chem. Soc., 101: 5624.CrossRefGoogle Scholar
  21. Teo, B. K., and Shulman, R. G., 1982, X-ray absorption studies of ironsulfur proteins and related compounds, Met. Ions Biol., 4: 343.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • James E. Penner-Hahn
    • 1
  1. 1.Department of ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations