Advertisement

X-Ray Absorption Spectroscopic Studies of Vanado-Enzymes: Nitrogenase and Bromoperoxidase

  • C. David Garner
  • Judith M. Arber
  • S. Samar Hasnain
  • Barry R. Dobson
  • Robert R. Eady
  • Barry E. Smith
  • Eize de Boer
  • Ron Wever
  • Tadashi Matsushita
  • Masaharu Nomura
Part of the Basic Life Sciences book series (BLSC, volume 51)

Abstract

Vanadium is well recognised as an essential trace element, is widely distributed throughout the lithosphere and biosphere, and is present in all mammalian tissues at concentrations of ≤ 10μM (Chasteen, 1983). However, only in a few instances can a precise biological role be assigned to this element. It is a potent inhibitor of phosphatases, Na,K-ATPases, and a variety of other important enzymes, doubtless because of the similarity of AO4 3- (for A=V or P) and their derivatives. Amavadín, an oxovanadium(IV) complex with two molecules of N-(1-carboxyethyl)-N-hydroxyalanine, has been isolated from the mushroom Amanita muscaria (Kneifel and Bayer, 1986) and may function as an electron-transfer catalyst (Nawi and Riechel, 1987). Two enzyme systems were shown to be dependent upon vanadium: nitrogenases from Azotobacter (Robson et al., 1986) and bromoperoxidases from marine algae (de Boer et al., 1986; de Boer et al., 1986). Herein we describe the results of vanadium K-edge X-ray absorption spectroscopic studies for a member of each of these two types of vanadium-dependent enzymes.

Keywords

Native Enzyme Titanium Foil Ascophyllum Nodosum Photon Factory Enzyme Turnover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber, J. M., Dobson, B. R., Eady, R. R., Stevens, P., Hasnain, S. S., Garner, C. D., and Smith, B. E., 1987, Vanadium K-edge, X-ray absorption spectrum of the VFe-protein of the vanadium nitrogenase of Azotobacter chrooccocum, Nature, 325: 372.CrossRefGoogle Scholar
  2. Chasteen, N. D., 1983, The biochemistry of vanadium, Structure and Bonding, 53: 107.Google Scholar
  3. Cramer, S. P., Gillum, W. O., Hodgson, K. O., Mortenson, L. E., Stiefel, E. I., Chisnell, J. R., Brill, W. I., and Shah, V. K., 1978, The molybdenum site of molybdenum cofactor by X-ray absorption spectroscopy, J. Amer. Chem. Soc., 100: 3814.CrossRefGoogle Scholar
  4. Cramer, S. P., Hodgson, K. O., Gillum, W. O., and Mortenson, L. E., 1978, The molybdenum state of nitrogenase. Preliminary structural evidence from X-ray absorption spectroscopy, J. Amer. Chem. Soc., 100: 3398.CrossRefGoogle Scholar
  5. de Boer, E., Van Kooyk, Y., Tromp, M. G. M., Plat, H., and Wever, R., 1986, Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as a prosthetic group, Biochim. Biophys. Acta, 869: 48.CrossRefGoogle Scholar
  6. de Boer, E., Tromp, M. G. M., Plat, H., Krenn, G. E., and Wever, R., 1986, Vanadium(V) as an essential element for haloperoxidase activity in marine brown algae: purification and characterization of a vanadium(V)- containing bromoperoxidase from Laminaria saccharína, Biochim. Biophys. Acta, 872: 104.CrossRefGoogle Scholar
  7. Eady, R. R., Smith, B. E., Cook, K. A., and Postgate, J. R., 1972, Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins, Biochem. J., 128: 655.Google Scholar
  8. Gurman, S. J., Binsted, N., and Ross, I., 1984, A rapid, exact curved-wave theory for EXAFS calculations, J. Phys. C: Solid State Phys., 17: 143.CrossRefGoogle Scholar
  9. Kneifel, H., and Bayer, E., 1986, Stereochemistry with total synthesis of Amavadin, the naturally occurring vanadium compound of Amanita muscaris, J. Amer. Chem. Soc., 108: 3075.CrossRefGoogle Scholar
  10. Kovacs, J. A., and Holm, R. H., 1986, Assembly of vanadium-iron-sulphur cubane clusters from mononuclear and linear trinuclear reactants, J. Amer. Chem. Soc., 108: 340.CrossRefGoogle Scholar
  11. Nawi, M. A., and Riechel, J. L., 1987, The electrochemistry of Amavadine, a vanadium natural product, Inorg. Chim. Acta, 136: 33.CrossRefGoogle Scholar
  12. Neidleman, S. L., and Geigert, J., 1986, “Biohalogenation: principles, basic roles and applications” Ellis Horwood Ltd., Chichester.Google Scholar
  13. Perutz, M. F., Hasnain, S. S., Duke, P. J., Sessler, J. L., and Hahn, J. E., 1982, Stereochemistry of iron in deoxyhaemoglobin, Nature, 295: 535.CrossRefGoogle Scholar
  14. Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R., 1986, The alternative nitrogenase of Azotobacter chrooccocum is a vanadium enzyme, Nature, 322: 388.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. David Garner
    • 1
  • Judith M. Arber
    • 1
  • S. Samar Hasnain
    • 2
  • Barry R. Dobson
    • 2
  • Robert R. Eady
    • 3
  • Barry E. Smith
    • 3
  • Eize de Boer
    • 4
  • Ron Wever
    • 4
  • Tadashi Matsushita
    • 5
  • Masaharu Nomura
    • 5
  1. 1.The Department of ChemistryManchester UniversityManchesterUK
  2. 2.The Daresbury LaboratoryDaresbury WarringtonUK
  3. 3.AFRC, IPSR Nitrogen Fixation LaboratoryUniversity of SussexBrightonUK
  4. 4.Laboratory of BiochemistryUniversity of AmsterdamAmsterdamThe Netherlands
  5. 5.The Photon FactoryNational Laboratory for High Energy PhysicsOho-machi, Tsukuba-gun, Ibaraki-ken 305Japan

Personalised recommendations