Iron Core Formation in Ferritins

  • Elizabeth C. Theil
  • Dale E. Sayers
Part of the Basic Life Sciences book series (BLSC, volume 51)


Iron is the most abundant transition metal in biology. Proteins containing iron are important for DNA synthesis, respiration, photosynthesis, nitrogen fixation and the transport and activation of dioxygen. Two properties of Fe(III) in aqueous solution lead to the formation of large, insoluble aggregates of iron and oxygen: first, the pKa of a proton in water coordinated to Fe(III) is ca 3; second, after proton loss, the conjugate bases form stable oxygen bridges to each other with the elimination of water. Thus unless ligands other than water are coordinated to Fe(III), the solubility of Fe(III) is very low under physiological conditions (ca 10−18 M) (Biedermann and Schindler, 1957). Animals, plants and microorganisms use ferritin, an iron protein complex, to accumulate reserves of iron sufficently high for the synthesis of proteins that have iron at the active center. Ferritin also provides a site for the detoxification of excess iron which enters an organism or cell when the normal barriers to controlled iron uptake are breached.


Protein Coat Mossbauer Spectroscopy Iron Core Ferritin Iron Hollow Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakker, G. R., and Boyer, R. F., 1986, Iron incorporation into apoferritin, J. Biol. Chem., 261: 13182.Google Scholar
  2. Biedermann, G., and Schindler, P., 1957, On the solubility product of precipitated Iron(III) hydroxide, Acta. Chem. Scand., 11: 731.CrossRefGoogle Scholar
  3. Chasteen, N. D., and Theil, E. C., 1982, Iron binding by horse spleen apoferritin: a vanadyl (IV) EPR spin probe study, J. Biol. Chem. 257: 7672.Google Scholar
  4. Crichton, R. R., Roman, F., Roland, F. Paques, E., and Vandamme, E., 1980, Ferritin Iron Deposition and Mobilisation, J. Mol. Catal. 7: 267.CrossRefGoogle Scholar
  5. Frankel, R. B., Papaefthymiou, G. C., and Watt, G. D., 1987, Binding of Fe(II) by mammalian ferritin, Hyperfine Interactions, 33: 233.CrossRefGoogle Scholar
  6. Macara, I. G., Hoy, T. G., and Harrison, P. M., 1973, The formation of ferritin from apoferritin, Biochem. J., 135: 343.Google Scholar
  7. Mansour, A. N., Thompson, C., Theil, E. C., Chasteen, N. D., and Sayers, D. E., 1985, Fe(III) ATP complexes: models for ferritin and other polynuclear iron complexes with phosphate, J. Biol. Chem., 260: 7975.Google Scholar
  8. Mertz, J. R., and Theil, E. C., 1983, Subunit Dimers in sheep spleen apoferritin, J. Biol. Chem., 258: 11719.Google Scholar
  9. Rice, D. W., Ford, G. C., White, J. L., Smith, J. M. A, and Harrison, P. M., 1983, The Spatial structure of horse spleen ferritin, Adv. in Inorganic Biochem., 5: 39.Google Scholar
  10. Rohrer, J. S., Joo, M. -S., Dartyge, E., Sayers, D. E., Fontaine, E., and Theil, E. C., 1987, Stabilization of iron in a ferrous form by ferritin, J. Biol. Chem., 262: 13385.Google Scholar
  11. Rosenberg, L. P., and Chasteen, N. D., 1982, Initial Iron Binding to Horse Spleen Apoferritin, in “Proteins of Iron Metabolism,” J. Hegenauer and P. Saltmen, eds., Elsevier, Amsterdam.Google Scholar
  12. Sayers, D. E., Theil, E. C., and Renníck, F. J., 1983, A distinct environment for Iron(III) in the complex of horse spleen apoferritin observed by X-ray absorption spectroscopy, J. Biol. Chem., 258: 14076.Google Scholar
  13. Theil, E. C., 1983, Ferritin structure, function and regulation, Adv. In Inorg. Biochem., 5:1–38.Google Scholar
  14. Theíl, E. C., 1987, Ferritín: structure, gene regulation and cellular function in animals, plants and microorganisms, Ann. Rev. Biochem. 56: 289–315.CrossRefGoogle Scholar
  15. Theil, E. C., Sayers, D. E., and Brown, M. A., 1979, Similarity of the structure of ferritín and iron-dextran (Imferon) determined by X-ray absorption fine structure analysis, J. Biol. Chem., 254: 8132.Google Scholar
  16. Treffry, A., and Harrison, P. M., 1984, Spectroscopic studies on the binding of iron, terbium and zinc by apoferritín, J. Inorg. Biochem., 28: 9.CrossRefGoogle Scholar
  17. Wardeska, J. G., Viglione, B., and Chasteen, N. D., 1986, Metal ion complexes of apoferritin: evidence for initial binding in the hydrophilic channels, J. Biol. Chem., 261: 6677.Google Scholar
  18. Watt, G. D., Frankel, R. B., and Papaefythymiou, G. C., 1985, Reduction of mammalian ferritín, Proc. Nat’l. Acad. of Sci. USA, 82: 3640.CrossRefGoogle Scholar
  19. Watt, G. D., Frankel, R. B., and Papaefthymiou, G. C., Spartalian, K., and Stiefel, E. I., 1986, Redox properties and Mossbauer spectroscopy of Azotobacter vinelandii bacterioferritin, Biochem., 25: 4330.CrossRefGoogle Scholar
  20. Yang, C. -Y., Bryan, A. M., Theíl, E. C., Sayers, D. E., and Bowen, L. H., 1986, Structural variatons in soluble iron complexes of models for ferritin: an X-ray absorption spectroscopy comparison of horse spleen ferritin to Blutai (iron-chondroitin sulfate) and Imferon (iron-dextran), J. Inorg. Biochem., 28: 393.CrossRefGoogle Scholar
  21. Yang, C. -Y., Meagher, A., Huynh, B. H., Sayers, D. E., and Theil, E. C., 1987, Iron(III) clusters bound to horse spleen apoferrítin: An X-ray absorption and Mossbauer spectroscopy study that shows iron nuclei can form on the protein, Biochem., 26: 497.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Elizabeth C. Theil
    • 1
  • Dale E. Sayers
    • 2
  1. 1.Department of BiochemistryNorth Carolina State UniversityRaleighUSA
  2. 2.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations