Quaternary and Tertiary Structures of Isometric RNA Viruses

  • J. E. Johnson
  • Z. Chen
  • Y. Li
  • T. Schmidt
  • C. Stauffacher
  • J. P. Wery
  • M. V. Hosur
  • P. C. Sehnke
Part of the Basic Life Sciences book series (BLSC, volume 51)


Small spherical RNA viruses infecting members of all five biological kingdoms have been subjects of biophysical studies for decades (Kaper, 1975; Argos and Johnson, 1984). Isolated from their hosts, these obligate parasites are homogeneous chemical entities that are now studied at atomic resolution using x-ray crystallography. In the crystal the virus exists in a resting or dormant state, however, particles released from dissolved crystals are fully infectious. Many viruses form crystalline inclusion bodies within their hosts (Martelli and Russo, 1977), suggesting that crystalline aggregates are a natural and stable state for storing virus particles. In the dormant state the viral capsid protects the nucleic acid from degradation and is essentially a storage protein. During other stages of the virus life cycle, the capsid protein participates in a variety of functions; some are listed in Table I. Although relatively few viruses have been investigated at atomic resolution (Table II), a clear pattern has emerged relating the quaternary structures of different virus capsids (Fig. 1) and the tertiary structures from different virus subunits (Fig. 2). Beyond the striking similarities there are differences in these virus structures that reflect unique strategies evolved for accomplishing required functions. In this paper the current understanding of the relationship between the structures of simple RNA viruses and their function will be discussed using, as examples, three structures recently determined in our laboratory (Hosur et al., 1987; Stauffacher et al., 1987; Chen et al., 1988). An introductory section on the structure determination of one of these viruses (beanpod mottle virus) will describe some of the modern methods of virus x-ray crystallography.


Rotation Function Virus Structure Tomato Bushy Stunt Virus Insect Virus Tobacco Streak Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad-Zapatero, C., Abdel-Meguid, S. S., Johnson, J. E., Leslie, A. G. W., Rayment, I., Rossmann, M. G., Suck, D., and Tsukihara, T., 1980, Structure of southern bean mosaic virus at 28 A resolution, Nature (London), 286: 33.CrossRefGoogle Scholar
  2. Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D., 1985, Sind bis virus proteins ns P1 and ns P2 contain homology to nonstructural proteins from several RNA plant viruses, J. Virol., 53: 536.Google Scholar
  3. Argos, P., and Johnson, J. E., 1984, Chemical stability in simple spherical plant viruses, in: “Biological Macromolecules and Assemblies,” F. A. Jurnak and A. McPherson, eds., Wiley & Sons, New York.Google Scholar
  4. Argos, P., and Rossmann, M. G., 1980, Molecular replacement method, in: “Theory and Practice of Direct Methods in Crystallography,” M. F. C. Ladd and R. A. Palmer, eds., Plenum Press, New York.Google Scholar
  5. Bancroft, J. B., 1962, Purification and properties of bean pod mottle virus and associated centrifugal and electrophoretic components, Virology, 16: 419.CrossRefGoogle Scholar
  6. Berg, J., 1986, Potential metal-binding domains in nucleic acid binding proteins, Science, 232: 485.CrossRefGoogle Scholar
  7. Callahan, P. L., Mizutani, S., and Colonno, R. J., 1985, Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. Proc. Natl. Acad. Sci. U.S.A., 82: 732.CrossRefGoogle Scholar
  8. Caspar, D. L. D., and Klug, A., 1962, Physical principles in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol., 27: 1.CrossRefGoogle Scholar
  9. Chen, Z., Stauffacher, C., Li, Y., Schmidt, T., Kamer, G., Shanks, M., Lomonossoff, G., and Johnson, J. E., 1988, Protein-nucleic acid interactions in a spherical virus: The structure of beanpod mottle virus at 3. 0 A resolution, Science, in preparation.Google Scholar
  10. Crick, F. H. C., and Watson, J. D., 1956, Structure of small viruses, Nature (London), 177: 473.CrossRefGoogle Scholar
  11. Dasmahapatra, B., Dasgupta, R., Ghosh, A., and Kaesberg, P., 1985, Structure of the black beetle virus genome and its functional implications, J. Mol.Biol., 182: 183.CrossRefGoogle Scholar
  12. Erickson, J., and Rossmann, M. G., 1982, Assembly and crystallization of a T=1 icosahedral particle from trypsinized southern bear mosaic virus coat protein, Virology, 116: 128.CrossRefGoogle Scholar
  13. Erickson, J. W., Silva, A. M., Murthy, M. N. R., Fita, I., and Rossmann, M. G., 1985, The Structure of a T=1 icosahedral empty particle from southern bean mosaic virus, Science, 229: 625.CrossRefGoogle Scholar
  14. Finch, J. T., Crowther, R. A., Hendry, D. A., and Struthers, J. K., 1974, The structure of nudaureha capersis virus: the first example of a capsíd with icosahedral surface symmetry T=4, J. Gen. Viral., 24: 191.CrossRefGoogle Scholar
  15. Francki, R., 1985, The viruses and their taxonomy, in: “The Plant Viruses, Vol. 1, Polyhedral Virions with Tripartite Genomes,” R. Franckí, H. Fraenkel-Conrat, and R. Wagner, eds., Plenum Press, New York.Google Scholar
  16. Fukuyama, K., Abdel-Meguid, S. S., Johnson, J. E., and Rossmann, M. G., 1983, Structure of a T=1 aggregate of alfalfa mosaic virus coat protein sent at 4.5 A resolution, J. Mol. Biol., 167: 873.CrossRefGoogle Scholar
  17. Gallagher, T., and Rueckert, R. R., 1988, Assembly-dependent maturation cleavage in provirions of a small icosahedral insect ribovirus, J. Gen. Virol., in press.Google Scholar
  18. Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K., and Bricogne, G., 1978, Tomato bushy stunt virus at 2.9 A resolution, Nature (London), 276: 368.CrossRefGoogle Scholar
  19. Hogle, J. M., Chow, M., and Filman, D. J., 1985, Three-dimensional structure of poliovirus at 2.9 A resolution, Science, 229: 1358.CrossRefGoogle Scholar
  20. Hogle, J. M., Maeda, A., and Harrison, S. C., 1986, Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2 A resolution, J. Mol. Biol., 191: 625.CrossRefGoogle Scholar
  21. Hosur, M. V., Schmidt, T., Tucker, R. C., Johnson, J. E., Gallagher, T. M., Selling, B. H., and Rueckert, R. R., 1987, Structure of an insect virus at 3.0 A resolution, Proteins, 2: 167.CrossRefGoogle Scholar
  22. Jones, T. A. and Liijas, L., 1984, Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5 A resolution, J. Mol. Biol., 177: 735.CrossRefGoogle Scholar
  23. Kaper, J. M., 1975, “The Chemical Bases of Virus Structure, Disassociation and Reassembly,” American Elsevier, New York.Google Scholar
  24. Koch, F., and Koch G., 1985, “The Molecular Biology of Poliovirus,” Springer-Verlag, New York.CrossRefGoogle Scholar
  25. Kraut, J., 1977, Serine protease: structure and mechanism of catalysis, in: “Annual Review of Biochemistry,” Academic Press, New York.Google Scholar
  26. Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E., Rossmann, M. G., Boege, U., Scraba, D. G., Duke, G. M., and Palmenberg, A. C., 1987, The atomic structure of mengo virus at 3.0 A resolution, Science, 235: 182.CrossRefGoogle Scholar
  27. Martelli, G. P., and Russo, M., 1977, Plant virus inclusion bodies, Adv. Virus Res., 21: 175.CrossRefGoogle Scholar
  28. McPherson, A., 1982, “Preparation and Analysis of Protein Crystals,” Wiley & Sons, New York.Google Scholar
  29. Miller, J., McLachlan, A., and Klug, A., 1985, Repetitive zinc-binding domains in the protein transcription factor. III. A from Xenopus oocytes, EMBO J., 4: 1609.Google Scholar
  30. Nickerson, K. W., and Lane, L. C., 1977, Polyamine content of several RNA plant viruses, Virology, 81: 455.CrossRefGoogle Scholar
  31. Olson, A. J., Bricogne, and Harrison, S. C., 1983, Structure of tomato bushy stunt virus. IV. The virus particle at 2.0 A resolution, J. Mol. Biol., 171: 61.CrossRefGoogle Scholar
  32. Olson, N. H., Baker, T. S., Bomu, W., Johnson, J. E., and Hendry, D. A., 1987, The three-dimensional structure of frozen-hydrated nudaurelia capersis virus, in: “Proc. 45th Ann. Meet. Elec. Microscopy Soc. of Am.,” San Francisco Press, California.Google Scholar
  33. Rayment, I. A., Baker, T. S., Caspar, D. L. D., and Murakami, W., 1982, Polyoma virus capsid structure at 22.5 A resolution, Nature, 295: 110.CrossRefGoogle Scholar
  34. Richardson, J. S., 1979, The anatomy and taxonomy of protein structure, Adv. Prot. Chem., 34: 167.CrossRefGoogle Scholar
  35. Roberts, M. M., White, J. L., Grutter, and Burnett, R. M., 1986, Three-dimensional structure of the adenovirus major coat protein hexon, Science, 232: 1148.CrossRefGoogle Scholar
  36. Robinson, I. K., and Harrison, S. C., 1982, Structure of the expanded state of tomato bushy stunt virus, Nature, 297: 563.CrossRefGoogle Scholar
  37. Rossmann, M. G., 1979, Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting, J. Appl. Crystallogr., 12: 225.CrossRefGoogle Scholar
  38. Rossmann, M. G., and Blow, D. M., 1962, The detection of sub-units within the crystallographic asymmetric unit, Acta Crystallogr., 15: 24.CrossRefGoogle Scholar
  39. Rossmann, M. G., and Rueckert, R. R., 1987, What does the molecular structure of viruses tell us about viral functions? Microbial. Sci., 4: 206.Google Scholar
  40. Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S., and Tsukihara, T., 1979, Processing and post-refinement of oscillation camera data, J. Appl. Crystallogr., 12: 570.CrossRefGoogle Scholar
  41. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B., and Vriend, G.,1985, Structure of a human common cold virus and functional relationship to other picornaviruses, Nature (London), 317: 145.CrossRefGoogle Scholar
  42. Savithri, H. S., and Erickson, J. W., 1983, The self-assembly of the cowpea strain of southern bean mosaic virus: formation of T=1 and T=3 nucleo protein particles, Virology, 126: 328.CrossRefGoogle Scholar
  43. Sehnke, P. C., and Johnson, J. E., 1988, Crystallization of a proteolytically modified subunut of tobacco streak virus, Virology, in preparation.Google Scholar
  44. Sehnke, P. C., Harrington, M., Hosur, M. V., Li, Y., Usha, R., Tucker, R. C., Bomu, W., Stauffacher, C. V., and Johnson, J. E., 1988a, Crystallization of viruses and virus proteins, J. Crystal Growth, in press.Google Scholar
  45. Sehnke, P. C., Mason, A., Hood, S. J., Lister, R. M., and Johnson, J. E., 1988b, A zinc-finger type binding domain in tobacco streak virus coat protein, unpublished.Google Scholar
  46. Shaw, J. G., 1985, Early events in plant virus infections, in: “Molecular Plant Virology, Vol. II,” J. W. Davies, ed., CRC Press, Boca Raton, Florida.Google Scholar
  47. Sherry, B., Masser, A. G., Colonno, R. J., and Rueckert, R. R., 1986, Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14, J. Viral., 57: 246.Google Scholar
  48. Silva, A. M., and Rossmann, M. G., 1987, Refined structure of southern bean mosaic virus at 2.9 A resolution, J. Mol. Biol., 197: 69.CrossRefGoogle Scholar
  49. Stauffacher, C. V., Usha, R., Harrington, M., Schmidt, T., Hosur, M. V., and Johnson, J. E., 1987, The structure of cowpea mosaic virus at 3.5 A resolution, Crystallogr. Mol. Biol., 126: 293.Google Scholar
  50. van Wezenbeek, P., Verver, J., Harmsen, J., Vos, P., and van Kammen, A., 1983, Primary structure and gene organization of the middle component RNA of cowpea mosaic virus, EMBO J., 2: 941.Google Scholar
  51. Varghese, J. N., Laver, W. G., and Colman, P. M., 1983, Structure of the influenza virus glycoprotein antigen neuraninidase at 2.9 A resolution, Nature, 303: 35.CrossRefGoogle Scholar
  52. Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, Structure of the lae magglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature, 289: 366.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. E. Johnson
    • 1
  • Z. Chen
    • 1
  • Y. Li
    • 1
  • T. Schmidt
    • 1
  • C. Stauffacher
    • 1
  • J. P. Wery
    • 1
  • M. V. Hosur
    • 1
  • P. C. Sehnke
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations