Data Collection from Very Thin HLA Crystals Using Synchrotron Radiation

  • Pamela J. Bjorkman
  • William S. Bennett
  • Don C. Wiley
Part of the Basic Life Sciences book series (BLSC, volume 51)


HLA molecules are polymorphic cell surface glycoproteins involved in the cellular immune response against viruses. Cytotoxic T-cells recognize viral peptides derived from intracellular processing that are complexed to HLA (Townsend et al., 1986; Maryanski et al., 1986). HLA class I molecules are heterodimers: the heavy chain has three domains (alpha1, alpha2, alpha3), and the light chain (beta2-microglobulin) consists of a single domain with homology to immunologlobulin constant regions. The heavy chain alphal and alpha2 domains are polymorphic between specificities, and the more constant alpha3 domain has homology to antibody constant domains and to the HLA light chain (reviewed in Hood et al., 1983). In order to understand how the polymorphic residues are distributed on the HLA structure, and how HLA interacts with peptides and T-cell receptors, we initiated a structure determination of HLA-A2, a human histocompatibility molecule. The structure of HLA-A2 and the implications for understanding how HLA molecules function have been previously described (Bjorkman et al., 1987a; Bjorkman,1987b). This report will concentrate only upon the data collection and processing of HLA films taken using synchrotron radiation as an X-ray source. Most of the HLA data were collected at a synchrotron facility in order to maximize the amount of diffraction data available from each crystal. Both HLA crystals and protein were in short supply, and HLA crystals are very thin (~20 microns).


Synchrotron Radiation Heavy Atom Multiple Wavelength Anomalous Scattering Synchrotron Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt, U. W., and Wonacott, A. J., 1977, “The Rotation Method in Crystallography,” North Holland, Amsterdam.Google Scholar
  2. Bartunik, H. D., Fourme, R., and Phillips, J. C., 1982, Macromolecular crystallography using synchrotron radiation, in: “Uses of Synchrotron Radiation in Biology,” H. B. Stuhrmann, ed., Academic Press, London.Google Scholar
  3. Bearden, J. A., 1967, X-ray wavelengths, Rev Mod Phys., 39: 78.CrossRefGoogle Scholar
  4. Bjorkman, P. J., Crystallographic Studies of HLA, Ph.D. thesis, Harvard University 1984.Google Scholar
  5. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C., 1987a, Structure of the human class histocompatibility antigen, HLA-A2, Nature, 329: 506.CrossRefGoogle Scholar
  6. Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C., 1987b, The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens, Nature, 329: 512.CrossRefGoogle Scholar
  7. Bjorkman, P. J., Stromínger, J. L., and Wiley, D. C., 1985, Crystallization and x-ray diffraction studies on the histocompatibility antigens HLA-A2 and A28 from human cell membranes, J. Mol. Biol., 186: 205.CrossRefGoogle Scholar
  8. Blum, M., Metcalf, P., Harrison, S. C., and Wiley, D. C., 1987, A system for collection and on-line integration of x-ray diffraction data from a multiwire area detector, J. Appl. Cryst., 20: 235.CrossRefGoogle Scholar
  9. Durbin, R. M., Burns, R., Moulai, J., Metcalf, P., Freymann, D., Blum, M., Anderson, J. E., Harrison, S. C., and Wiley, D. C., 1986, Protein, DNA and virus crystallography with a focused imaging proportional counter, Science, 232: 1127.Google Scholar
  10. Harrison, S. C., 1968, A point-focusing camera for single-crystal diffraction, J. Appl. Cryst., 1: 84.CrossRefGoogle Scholar
  11. Hendrickson, W. A. and Teeter, M., 1981, Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290: 107.CrossRefGoogle Scholar
  12. Hood, L., Steinmetz, M., and Malissen, B., 1983, Genes of the major histo- compatibility complex of the mouse, Ann. Rev. Immunol. 1: 59.CrossRefGoogle Scholar
  13. Maryanski, J. L., Pala, P., Corradin, G., Jordan, B. R., and Grottini, J-C, 1986, H-2-restricted cytolytic T-cells specific for HLA can recognize a synthetic HLA peptide, Nature, 324: 578.CrossRefGoogle Scholar
  14. Nathenson, S. G., and Shimada, A., 1968, Papain solubilization of the mouse H-2 isoantigen: or improved method of wide applicability, Transplantation, 6: 662.CrossRefGoogle Scholar
  15. Parham, P., Alpert, B. N., Orr, H. T., and Stromínger, J. L., 1977, Carbohydrate moiety of HLA antigens, J. Biol. Chem., 252: 7555.Google Scholar
  16. Phillips, J. C., and Hodgson, K., 1980, The use of anomalous scattering effects to phase diffraction patterns from macromolecules, Acta Cryst., A36: 856.CrossRefGoogle Scholar
  17. Phillips, J. C., Wlodawer, A., Goodfellow, J. M., Watenpaugh, K. A., Sieken, L. C., Jensen, L. H., and Hodson, K. O., 1977, Applications of synchrotron radiation to protein crystallography. II Anomalous Scattering, Absolute Intensity and Polarization, Acta Cryst., A33: 445.CrossRefGoogle Scholar
  18. Townsend, A. R. M., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D., and McMichael, A. J., 1986, The epítopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides, Cell, 44: 959.CrossRefGoogle Scholar
  19. Mann, D. L., and Sanderson, A. R., 1975, Purification of Turner, M. J., Cresswell, P., Parham, P., Stromínger, J. L., papain-solubilized histocompatibility antigens from a cultured human lymphoblastoid line RPMI 4265, J. Biol. Chem., 250: 4512.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Pamela J. Bjorkman
    • 1
  • William S. Bennett
    • 1
  • Don C. Wiley
    • 1
  1. 1.Dept. of Biochemistry and Molecular BiologyHoward Hughes Medical InstituteCambridgeUSA

Personalised recommendations