Structural Studies of Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase from Spinach

  • Stefan Knight
  • Inger Andersson
  • Carl-Ivar Branden
  • George Lorimer
Part of the Basic Life Sciences book series (BLSC, volume 51)


Ribulose-1, 5-bisphosphate carboxylase/oxygenase, Rubisco, plays an important role in photosynthesis as well as in photorespiration. In photosynthesis, the carboxylase activity of the enzyme catalyzes the condensation of carbon dioxide and ribulose-1, 5-bisphosphate to yield two moles of 3-D-phosphoglycerate (Miziorko and Lorimer, 1983; Andrews and Lorimer, 1987). In addition, Rubisco has an oxygenase activity whereby oxygen is added to ribulose 1, 5-bisphosphate to yield 3-D-phosphoglycerate and 2-phosphoglycolate, the major substrate for photorespiration. As a result of the subsequent metabolism of phosphoglycolate one of the carbon atoms is oxidized to carbon dioxide and the released energy is lost as heat. Up to 50% of the photosynthetically reduced carbon may be oxidized through this pathway. The possibility to increase the carboxylase/oxygenase ratio has therefore attracted substantial interest. An understanding of the structural basis for the two activities would greatly facilitate the successful use of site directed mutagenesis techniques towards this end.


Alpha Helix Metal Binding Site Triose Phosphate Isomerase Beta Strand Glycolate Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alber, T. C., Davenport, Jr., R. C., Giammona, D. A., Lolls, E., Petsko, G. A., and Ringe, D., 1987, Crystallography and site-directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a “simple” enzyme? Cold Spring Harbor Symp. Quant. Biol., 52: 603.CrossRefGoogle Scholar
  2. Andersson, I., and Branden, C.-I., 1984, Large single crystals of spinach 1,5-bisphosphate carboxylase/oxygenase suitable for X-ray studies, J. Mol. Biol., 172: 363.CrossRefGoogle Scholar
  3. Andrews, T. J., and Lorimer, G. H., 1987, Rubisco: structure, mechanisms, and prospects for improvement, in: “The Biochemistry of Plants,” Hatch, M. D., ed, Academic Press, Orlando.Google Scholar
  4. Bricogne, G., 1976, Methods and programs for direct-space exploitation of geometric redundancies, Acta Crystallogr., Sect. A, 32: 832.CrossRefGoogle Scholar
  5. Chapman, M. S., Suh, S. W., Cascio, D., Smith, W. W., and Eisenberg, D., 1987, Sliding-layer conformational change limited by the quaternary structure of plant RuBisCO, Nature, 329: 354.CrossRefGoogle Scholar
  6. Estelle, M., Hanks, J., McIntosh, L., and Somerville, C., 1985, Site-specific mutagenesis of ribulose-1,5-bisphosphate carboxylase/oxygenase, J. Biol. Chem., 260: 9523.Google Scholar
  7. Gutteridge, S., Sigal, I., Thomas, B., Arentzen, R., Cordova, A., and Lorimer, G., 1984, A site-specific mutation within the active site of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, EMBO J., 3: 2737.Google Scholar
  8. Hartman, F. C., Foote, R. S., Larimer, F. W., Lee, E. H., Machanoff, R., Milanez, S., Mitra, S., Mural, R. J., Niyogi, S. K., Smith, H. B., Soper, T. S., and Stringer, C. D., 1987, Function of active-site residues of ribulose bisphosphate carboxylase/oxygenase, in: “Plant Molecular Biology,” von Wettstein, D. and Chua, N.-H., eds, Plenum Press, New York.Google Scholar
  9. Hol, W. G. J., van Duijnen, P. T., and Berendsen, H. J. C., 1978, The a-helix dipole and the properties of proteins, Nature, 273: 443.CrossRefGoogle Scholar
  10. Holzenburg, A., Mayer, F., Harauz, G., van Heel, M., Tokuoka, R., Ishida, T., Harata, K., Pal, G. P., and Saenger, W., 1987, Structure of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from Alcaligenes eutrophyus H16, Nature, 325: 730.CrossRefGoogle Scholar
  11. Johal, S., Partridge, B. E., and Chollet, R., 1985, Structural characterization and the determination of negative cooperativity in the tight binding of 2-carboxyarabinitol bisphosphate to higher plant ribulose bisphophate carboxylase, J. Biol. Chem., 260: 9894.Google Scholar
  12. Lorimer, F. W., Lee, E. H., Mural, R. J., Soper, T. S., and Hartman, F. C., 1987, Intersubunit location of the active site of ribulose-bisphosphate carboxylase/oxygenase as determined by in vivo hybridization of site directed mutants, J. Biol. Chem., 262: 15327.Google Scholar
  13. Lindqvist, Y., and Branden, C.-I., 1985, Structure of glycolate oxidase from spinach, Proc. Natl. Acad. Sci. USA, 82: 6855.CrossRefGoogle Scholar
  14. Lorimer, G., 1981, Ribulosebisphosphate carboxylase: amino acid sequence of a peptide bearing the activator carbon dioxide, Biochemistry, 20: 1236.CrossRefGoogle Scholar
  15. Lorimer, G. and Miziorko, H. M., 1980, Carbamate formation on the –amino group of a lysyl residue as the basis for the activation of ribulose-bisphosphate carboxylase by CO2 and Mg2+, Biochemistry, 19: 5321.CrossRefGoogle Scholar
  16. Miziorko, H. M., and Lorimer, G., 1983, Ribulose-1,5-bisphosphate carboxylase-oxygenase, Annu. Rev. Biochem., 52: 507.CrossRefGoogle Scholar
  17. Musgrove, J. E., and Ellis, R. J., 1986, The Rubisco large subunit binding protein, Phil. Trans. Roy. Soc. Lond. B, 313: 419.CrossRefGoogle Scholar
  18. Nargang, F., McIntosh L., and Somerville, C. R., 1984, Nucleotide sequence of the ribulosebisphosphate carboxylase gene from Rhodospirillum rubrum, Mol. Gen. Genet., 193: 220.CrossRefGoogle Scholar
  19. Phillips, D. C., Sternberg, M. J. E., Thornton, J. M., and Wilson, I. A., 1978, An analysis of the structure of triose phosphate isomerase and its comparison with lactate dehydrogenase, J. Mol. Biol., 119: 329.CrossRefGoogle Scholar
  20. Pierce, J., Tolbert, N. E., and Barker, R., 1980, Interaction of ribulosebisphosphate carboxylase/oxygenase with transition state analogues, Biochemistry, 19: 934.CrossRefGoogle Scholar
  21. Pierce, J., and Reddy, G. S., 1986, The sites for catalysis and activation of ribulosebisphosphate carboxylase share a common domain, Arch. Biochem. Biophys., 245: 483.CrossRefGoogle Scholar
  22. Priestle, J. P., Grutter, M. G., White, J. L., Vincent, M. G., Kania, M., Wilson, E., Jardetzky, T. S., Kirschner, K., and Jansonius, J. N., 1987, Three-dimensional structure of the bifunctional enzyme N-(5’-phosphoribosyl)anthranilate isomerase-indole-3-glycerolphosphate synthase from Escherichia coli, Proc. Natl. Acad. Sci. USA 84: 5690.CrossRefGoogle Scholar
  23. Schneider, G., Lindqvist, Y., Branden, C.-I., and Lorimer, G., 1986, Three-dimensional structure of ribulose-1, 5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9 A resolution, EMBO J., 5: 3409.Google Scholar
  24. Somerville, C. R., and Somerville, S. C., 1984, Cloning and expression of the Rhodospirillum rubrum ribulosebisphosphate carboxylase gene in E. coli, Mol. Gen. Genet., 193: 214.CrossRefGoogle Scholar
  25. Wang, B.-C., 1985, Resolution of phase ambiguity in macromolecular crystallography, Meth. Enzymol., 115: 90.CrossRefGoogle Scholar
  26. Wierenga, R. K., De Maeyer, M. C. H., and Hol, W. G. J., 1985, Interaction of pyrophosphate moieties with a-helices in dinucleotide binding proteins, Biochemistry, 24: 1346.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Stefan Knight
    • 1
  • Inger Andersson
    • 1
  • Carl-Ivar Branden
    • 1
  • George Lorimer
    • 2
  1. 1.Swedish University of Agricultural Sciences Department of Molecular BiologyUppsala Biomedical CenterUppsalaSweden
  2. 2.E.I. du Pont de Nemours and Company Inc.WilmingtonUSA

Personalised recommendations